Results for 'Protein'

994 found
Order:
  1. Section A. membranes.Protein Synthesis as A. Membrane-Oriented & Richard W. Hendler - 1968 - In Peter Koestenbaum (ed.), Proceedings. [San Jose? Calif.,: [San Jose? Calif.. pp. 37.
    No categories
     
    Export citation  
     
    Bookmark  
  2.  24
    RNA‐protein interactions: Central players in coordination of regulatory networks.Alexandros Armaos, Elsa Zacco, Natalia Sanchez de Groot & Gian Gaetano Tartaglia - 2021 - Bioessays 43 (2):2000118.
    Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration‐dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post‐transcriptional layer of gene regulation. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  31
    RGS proteins as targets in the treatment of intestinal inflammation and visceral pain: New insights and future perspectives.Maciej Salaga, Martin Storr, Kirill A. Martemyanov & Jakub Fichna - 2016 - Bioessays 38 (4).
    Regulators of G protein signaling (RGS) proteins provide timely termination of G protein‐coupled receptor (GPCR) responses. Serving as a central control point in GPCR signaling cascades, RGS proteins are promising targets for drug development. In this review, we discuss the involvement of RGS proteins in the pathophysiology of the gastrointestinal inflammation and their potential to become a target for anti‐inflammatory drugs. Specifically, we evaluate the emerging evidence for modulation of selected receptor families: opioid, cannabinoid and serotonin by RGS (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  4.  65
    Proteins, the chaperone function and heredity.Valeria Mosini - 2013 - Biology and Philosophy 28 (1):53-74.
    In this paper I use a case study—the discovery of the chaperon function exerted by proteins in the various steps of the hereditary process—to re-discuss the question whether the nucleic acids are the sole repositories of relevant information as assumed in the information theory of heredity. The evidence I here present of a crucial role for molecular chaperones in the folding of nascent proteins, as well as in DNA duplication, RNA folding and gene control, suggests that the family of proteins (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  18
    Ribosomal protein uS3 in cell biology and human disease: Latest insights and prospects.Dmitri Graifer & Galina Karpova - 2020 - Bioessays 42 (12):2000124.
    The conserved ribosomal protein uS3 in eukaryotes has long been known as one of the essential components of the small (40S) ribosomal subunit, which is involved in the structure of the 40S mRNA entry pore, ensuring the functioning of the 40S subunit during translation initiation. Besides, uS3, being outside the ribosome, is engaged in various cellular processes related to DNA repair, NF‐kB signaling pathway and regulation of apoptosis. This review is devoted to recent data opening new horizons in understanding (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6. The Protein Ontology: A structured representation of protein forms and complexes.Darren Natale, Cecilia N. Arighi, Winona C. Barker, Judith A. Blake, Carol J. Bult, Michael Caudy, Harold J. Drabkin, Peter D’Eustachio, Alexei V. Evsikov, Hongzhan Huang, Jules Nchoutmboube, Natalia V. Roberts, Barry Smith, Jian Zhang & Cathy H. Wu - 2011 - Nucleic Acids Research 39 (1):D539-D545.
    The Protein Ontology (PRO) provides a formal, logically-based classification of specific protein classes including structured representations of protein isoforms, variants and modified forms. Initially focused on proteins found in human, mouse and Escherichia coli, PRO now includes representations of protein complexes. The PRO Consortium works in concert with the developers of other biomedical ontologies and protein knowledge bases to provide the ability to formally organize and integrate representations of precise protein forms so as to (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  7.  18
    Palmitoylated Proteins in Plasmodium falciparum‐Infected Erythrocytes: Investigation with Click Chemistry and Metabolic Labeling.Nicole Kilian, Yongdeng Zhang, Lauren LaMonica, Giles Hooker, Derek Toomre, Choukri Ben Mamoun & Andreas M. Ernst - 2020 - Bioessays 42 (6):1900145.
    The examination of the complex cell biology of the human malaria parasite Plasmodium falciparum usually relies on the time‐consuming generation of transgenic parasites. Here, metabolic labeling and click chemistry are employed as a fast transfection‐independent method for the microscopic examination of protein S‐palmitoylation, an important post‐translational modification during the asexual intraerythrocytic replication of P. falciparum. Applying various microscopy approaches such as confocal, single‐molecule switching, and electron microscopy, differences in the extent of labeling within the different asexual developmental stages of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  39
    TssA: The cap protein of the Type VI secretion system tail.Abdelrahim Zoued, Eric Durand, Yoann G. Santin, Laure Journet, Alain Roussel, Christian Cambillau & Eric Cascales - 2017 - Bioessays 39 (10):1600262.
    The Type VI secretion system is a multiprotein and mosaic apparatus that delivers protein effectors into prokaryotic or eukaryotic cells. Recent data on the enteroaggregative Escherichia coli T6SS have provided evidence that the TssA protein is a key component during T6SS biogenesis. The T6SS comprises a trans-envelope complex that docks the baseplate, a cytoplasmic complex that represents the assembly platform for the tail. The T6SS tail is structurally, evolutionarily and functionally similar to the contractile tails of bacteriophages. We (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  9.  23
    Replication protein A prevents promiscuous annealing between short sequence homologies: Implications for genome integrity.Sarah K. Deng, Huan Chen & Lorraine S. Symington - 2015 - Bioessays 37 (3):305-313.
    Replication protein A (RPA) is the main eukaryotic single‐stranded DNA (ssDNA) binding protein, having essential roles in all DNA metabolic reactions involving ssDNA. RPA binds ssDNA with high affinity, thereby preventing the formation of secondary structures and protecting ssDNA from the action of nucleases, and directly interacts with other DNA processing proteins. Here, we discuss recent results supporting the idea that one function of RPA is to prevent annealing between short repeats that can lead to chromosome rearrangements by (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  10. Proteins and Genes, Singletons and Species.Branko Kozulić - unknown
    Recent experimental data from proteomics and genomics are interpreted here in ways that challenge the predominant viewpoint in biology according to which the four evolutionary processes, including mutation, recombination, natural selection and genetic drift, are sufficient to explain the origination of species. The predominant viewpoint appears incompatible with the finding that the sequenced genome of each species contains hundreds, or even thousands, of unique genes - the genes that are not shared with any other species. These unique genes and proteins, (...)
     
    Export citation  
     
    Bookmark  
  11.  27
    The Protein‐Coding Human Genome: Annotating High‐Hanging Fruits.Klas Hatje, Stefanie Mühlhausen, Dominic Simm & Martin Kollmar - 2019 - Bioessays 41 (11):1900066.
    The major transcript variants of human protein‐coding genes are annotated to a certain degree of accuracy combining manual curation, transcript data, and proteomics evidence. However, there is considerable disagreement on the annotation of about 2000 genes—they can be protein‐coding, noncoding, or pseudogenes—and on the annotation of most of the predicted alternative transcripts. Pure transcriptome mapping approaches seem to be limited in discriminating functional expression from noise. These limitations have partially been overcome by dedicated algorithms to detect alternative spliced (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  12
    Mitochondrial protein import machinery conveys stress signals to the cytosol and beyond.Eirini Lionaki, Ilias Gkikas & Nektarios Tavernarakis - 2023 - Bioessays 45 (3):2200160.
    Mitochondria hold diverse and pivotal roles in fundamental processes that govern cell survival, differentiation, and death, in addition to organismal growth, maintenance, and aging. The mitochondrial protein import system is a major contributor to mitochondrial biogenesis and lies at the crossroads between mitochondrial and cellular homeostasis. Recent findings highlight the mitochondrial protein import system as a signaling hub, receiving inputs from other cellular compartments and adjusting its function accordingly. Impairment of protein import, in a physiological, or disease (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  12
    Protein modifications in Hedgehog signaling.Min Liu, Ying Su, Jingyu Peng & Alan Jian Zhu - 2021 - Bioessays 43 (12):2100153.
    The complexity of the Hedgehog (Hh) signaling cascade has increased over the course of evolution; however, it does not suffice to accommodate the dynamic yet robust requirements of differential Hh signaling activity needed for embryonic development and adult homeostatic maintenance. One solution to solve this dilemma is to apply multiple forms of post‐translational modifications (PTMs) to the core Hh signaling components, modulating their abundance, localization, and signaling activity. This review summarizes various forms of protein modifications utilized to regulate Hh (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  32
    LRRC8 proteins share a common ancestor with pannexins, and may form hexameric channels involved in cell-cell communication.Federico Abascal & Rafael Zardoya - 2012 - Bioessays 34 (7):551-560.
  15.  27
    Replication protein A: Single‐stranded DNA's first responder.Ran Chen & Marc S. Wold - 2014 - Bioessays 36 (12):1156-1161.
    Replication protein A (RPA), the major single‐stranded DNA‐binding protein in eukaryotic cells, is required for processing of single‐stranded DNA (ssDNA) intermediates found in replication, repair, and recombination. Recent studies have shown that RPA binding to ssDNA is highly dynamic and that more than high‐affinity binding is needed for function. Analysis of DNA binding mutants identified forms of RPA with reduced affinity for ssDNA that are fully active, and other mutants with higher affinity that are inactive. Single molecule studies (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  16.  31
    Protein disulfide isomerase is regulated in multiple ways: Consequences for conformation, activities, and pathophysiological functions.Lei Wang, Jiaojiao Yu & Chih-Chen Wang - 2021 - Bioessays 43 (3):2000147.
    Protein disulfide isomerase (PDI) is one of the most abundant and critical protein folding catalysts in the endoplasmic reticulum of eukaryotic cells. PDI consists of four thioredoxin domains and interacts with a wide range of substrate and partner proteins due to its intrinsic conformational flexibility. PDI plays multifunctional roles in a variety of pathophysiological events, both as an oxidoreductase and a molecular chaperone. Recent studies have revealed that the conformation and activity of PDI can be regulated in multiple (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  8
    C2H2 proteins: Evolutionary aspects of domain architecture and diversification.Artem N. Bonchuk & Pavel G. Georgiev - 2024 - Bioessays 46 (8):2400052.
    The largest group of transcription factors in higher eukaryotes are C2H2 proteins, which contain C2H2‐type zinc finger domains that specifically bind to DNA. Few well‐studied C2H2 proteins, however, demonstrate their key role in the control of gene expression and chromosome architecture. Here we review the features of the domain architecture of C2H2 proteins and the likely origin of C2H2 zinc fingers. A comprehensive investigation of proteomes for the presence of proteins with multiple clustered C2H2 domains has revealed a key difference (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  15
    PAQR proteins and the evolution of a superpower: Eating all kinds of fats.Marc Pilon & Mario Ruiz - 2023 - Bioessays 45 (9):2300079.
    Recently published work showed that members of the PAQR protein family are activated by cell membrane rigidity and contribute to our ability to eat a wide variety of diets. Cell membranes are primarily composed of phospholipids containing dietarily obtained fatty acids, which poses a challenge to membrane properties because diets can vary greatly in their fatty acid composition and could impart opposite properties to the cellular membranes. In particular, saturated fatty acids (SFAs) can pack tightly and form rigid membranes (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  61
    Fluorescent proteins for FRET microscopy: Monitoring protein interactions in living cells.Richard N. Day & Michael W. Davidson - 2012 - Bioessays 34 (5):341-350.
    The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live‐cell imaging. In particular, the development of FPs for fluorescence (or Förster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  20. Protein Ontology: A controlled structured network of protein entities.A. Natale Darren, N. Arighi Cecilia, A. Blake Judith, J. Bult Carol, R. Christie Karen, Cowart Julie, D’Eustachio Peter, D. Diehl Alexander, J. Drabkin Harold, Helfer Olivia, Barry Smith & Others - 2013 - Nucleic Acids Research 42 (1):D415-21..
    The Protein Ontology (PRO; http://proconsortium.org) formally defines protein entities and explicitly represents their major forms and interrelations. Protein entities represented in PRO corresponding to single amino acid chains are categorized by level of specificity into family, gene, sequence and modification metaclasses, and there is a separate metaclass for protein complexes. All metaclasses also have organism-specific derivatives. PRO complements established sequence databases such as UniProtKB, and interoperates with other biomedical and biological ontologies such as the Gene Ontology (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  21.  9
    Fluid protein fold space and its implications.Lauren L. Porter - 2023 - Bioessays 45 (9):2300057.
    Fold‐switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli, suggest a new view of protein fold space. For decades, experimental evidence has indicated that protein fold space is discrete: dissimilar folds are encoded by dissimilar amino acid sequences. Challenging this assumption, fold‐switching proteins interconnect discrete groups of dissimilar protein folds, making protein fold space fluid. Three recent observations support the concept of fluid fold space: (1) some amino acid sequences interconvert between (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22. Protein-centric connection of biomedical knowledge: Protein Ontology research and annotation tools.Cecilia N. Arighi, Darren A. Natale, Judith A. Blake, Carol J. Bult, Michael Caudy, Alexander D. Diehl, Harold J. Drabkin, Peter D'Eustachio, Alexei Evsikov, Hongzhan Huang, Barry Smith & Others - 2011 - In Landgrebe Jobst & Smith Barry (eds.), Proceedings of the 2nd International Conference on Biomedical Ontology. CEUR, vol. 833. pp. 285-287.
    The Protein Ontology (PRO) web resource provides an integrative framework for protein-centric exploration and enables specific and precise annotation of proteins and protein complexes based on PRO. Functionalities include: browsing, searching and retrieving, terms, displaying selected terms in OBO or OWL format, and supporting URIs. In addition, the PRO website offers multiple ways for the user to request, submit, or modify terms and/or annotation. We will demonstrate the use of these tools for protein research and annotation.
    Direct download  
     
    Export citation  
     
    Bookmark  
  23.  32
    Protein-protein interactions: Making sense of networks via graph-theoretic modeling.Nataša Pržulj - 2011 - Bioessays 33 (2):115-123.
    The emerging area of network biology is seeking to provide insights into organizational principles of life. However, despite significant collaborative efforts, there is still typically a weak link between biological and computational scientists and a lack of understanding of the research issues across the disciplines. This results in the use of simple computational techniques of limited potential that are incapable of explaining these complex data. Hence, the danger is that the community might begin to view the topological properties of network (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  32
    Proteins as adaptive complex systems.Hans Frauenfelder - forthcoming - Complexity.
    Direct download  
     
    Export citation  
     
    Bookmark  
  25.  34
    G protein‐coupled receptors: the inside story.Kees Jalink & Wouter H. Moolenaar - 2010 - Bioessays 32 (1):13-16.
    Recent findings necessitate revision of the traditional view of G protein‐coupled receptor (GPCR) signaling and expand the diversity of mechanisms by which receptor signaling influences cell behavior in general. GPCRs elicit signals at the plasma membrane and are then rapidly removed from the cell surface by endocytosis. Internalization of GPCRs has long been thought to serve as a mechanism to terminate the production of second messengers such as cAMP. However, recent studies show that internalized GPCRs can continue to either (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  14
    A protein‐lipid complex that detoxifies free fatty acids.Shaojie Cui & Jin Ye - 2023 - Bioessays 45 (3):2200210.
    Fatty acids (FAs) are well known to serve as substrates for reactions that provide cells with membranes and energy. In contrast to these metabolic reactions, the physiological importance of FAs themselves known as free FAs (FFAs) in cells remains obscure. Since accumulation of FFAs in cells is toxic, cells must develop mechanisms to detoxify FFAs. One such mechanism is to sequester free polyunsaturated FAs (PUFAs) into a droplet‐like structure assembled by Fas‐Associated Factor 1 (FAF1), a cytosolic protein. This sequestration (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  63
    G protein‐coupled receptors engage the mammalian Hippo pathway through F‐actin.Laura Regué, Fan Mou & Joseph Avruch - 2013 - Bioessays 35 (5):430-435.
    The Hippo pathway, a cascade of protein kinases that inhibits the oncogenic transcriptional coactivators YAP and TAZ, was discovered in Drosophila as a major determinant of organ size in development. Known modes of regulation involve surface proteins that mediate cell‐cell contact or determine epithelial cell polarity which, in a tissue‐specific manner, use intracellular complexes containing FERM domain and actin‐binding proteins to modulate the kinase activities or directly sequester YAP. Unexpectedly, recent work demonstrates that GPCRs, especially those signaling through Galpha12/13 (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  24
    The Protein Side of the Central Dogma: Permanence and Change.Michel Morange - 2006 - History and Philosophy of the Life Sciences 28 (4):513 - 524.
    There are two facets to the central dogma proposed by Francis Crick in 1957. One concerns the relation between the sequence of nucleotides and the sequence of amino acids, the second is devoted to the relation between the sequence of amino acids and the native three-dimensional structure of proteins. 'Folding is simply a function of the order of the amino acids,' i.e. no information is required for the proper folding of a protein other than the information contained in its (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  29.  23
    Quinary protein structure and the consequences of crowding in living cells: Leaving the test‐tube behind.Anna Jean Wirth & Martin Gruebele - 2013 - Bioessays 35 (11):984-993.
    Although the importance of weak proteinprotein interactions has been understood since the 1980s, scant attention has been paid to this “quinary structure”. The transient nature of quinary structure facilitates dynamic sub‐cellular organization through loose grouping of proteins with multiple binding partners. Despite our growing appreciation of the quinary structure paradigm in cell biology, we do not yet understand how the many forces inside the cell – the excluded volume effect, the “stickiness” of the cytoplasm, and hydrodynamic interactions – (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30. Framework for a protein ontology.Darren A. Natale, Cecilia N. Arighi, Winona Barker, Judith Blake, Ti-Cheng Chang, Zhangzhi Hu, Hongfang Liu, Barry Smith & Cathy H. Wu - 2007 - BMC Bioinformatics 8 (Suppl 9):S1.
    Biomedical ontologies are emerging as critical tools in genomic and proteomic research where complex data in disparate resources need to be integrated. A number of ontologies exist that describe the properties that can be attributed to proteins; for example, protein functions are described by Gene Ontology, while human diseases are described by Disease Ontology. There is, however, a gap in the current set of ontologies—one that describes the protein entities themselves and their relationships. We have designed a (...) Ontology (PRO) to facilitate protein annotation and to guide new experiments. The components of PRO extend from the classification of proteins on the basis of evolutionary relationships to the representation of the multiple protein forms of a gene (products generated by genetic variation, alternative splicing, proteolytic cleavage, and other post-translational modification). PRO will allow the specification of relationships between PRO, GO and other OBO Foundry ontologies. Here we describe the initial development of PRO, illustrated using human proteins from the TGF-beta signaling pathway. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  31.  37
    Protein folding and evolution are driven by the Maxwell demon activity of proteins.Alejandro Balbín & Eugenio Andrade - 2004 - Acta Biotheoretica 52 (3):173-200.
    In this paper we propose a theoretical model of protein folding and protein evolution in which a polypeptide (sequence/structure) is assumed to behave as a Maxwell Demon or Information Gathering and Using System (IGUS) that performs measurements aiming at the construction of the native structure. Our model proposes that a physical meaning to Shannon information (H) and Chaitin's algorithmic information (K) parameters can be both defined and referred from the IGUS standpoint. Our hypothesis accounts for the interdependence of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  24
    Small proteins, big roles: The signaling protein Apela extends the complexity of developmental pathways in the early zebrafish embryo.Michal Reichman-Fried & Erez Raz - 2014 - Bioessays 36 (8):741-745.
    The identification of molecules controlling embryonic patterning and their functional analysis has revolutionized the fields of Developmental and Cell Biology. The use of new sequence information and modern bioinformatics tools has enriched the list of proteins that could potentially play a role in regulating cell behavior and function during early development. The recent application of efficient methods for gene knockout in zebrafish has accelerated the functional analysis of many proteins, some of which have been overlooked due to their small size. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  23
    Analyzing proteinprotein interactions in cell membranes.Anja Nohe & Nils O. Petersen - 2004 - Bioessays 26 (2):196-203.
    Interactions among membrane proteins regulate numerous cellular processes, including cell growth, cell differentiation and apoptosis. We need to understand which proteins interact, where they interact and to which extent they interact. This article describes a set of novel approaches to measure, on the surface of living cells, the number of clusters of proteins, the number of proteins per cluster, the number of clusters or membrane domains that contain pairs of interacting proteins and the fraction of one protein species that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34. TGF-beta signaling proteins and the Protein Ontology.Arighi Cecilia, Liu Hongfang, Natale Darren, Barker Winona, Drabkin Harold, Blake Judith, Barry Smith & Wu Cathy - 2009 - BMC Bioinformatics 10 (Suppl 5):S3.
    The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or posttranslational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. PRO provides (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  35.  45
    Protein partners of KCTD proteins provide insights about their functional roles in cell differentiation and vertebrate development.Mikhail Skoblov, Andrey Marakhonov, Ekaterina Marakasova, Anna Guskova, Vikas Chandhoke, Aybike Birerdinc & Ancha Baranova - 2013 - Bioessays 35 (7):586-596.
    The KCTD family includes tetramerization (T1) domain containing proteins with diverse biological effects. We identified a novel member of the KCTD family, BTBD10. A comprehensive analysis of proteinprotein interactions (PPIs) allowed us to put forth a number of testable hypotheses concerning the biological functions for individual KCTD proteins. In particular, we predict that KCTD20 participates in the AKT‐mTOR‐p70 S6k signaling cascade, KCTD5 plays a role in cytokinesis in a NEK6 and ch‐TOG‐dependent manner, KCTD10 regulates the RhoA/RhoB pathway. Developmental (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  36.  18
    Protein trafficking along the exocytotic pathway.Wanjin Hong & Bor Luen Tang - 1993 - Bioessays 15 (4):231-238.
    Proteins of the exocytotic (secretory) pathway are initially targeted to the endoplasmic reticulum (ER) and then translocated across and/or inserted into the membrane of the ER. During their anterograde transport with the bulk of the membrane flow along the exocytotic pathway, some proteins are selectively retained in various intracellular compartments, while others are sorted to different branches of the pathway. The signals or structural motifs that are involved in these selective targeting processes are being revealed and investigations into the mechanistic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37. The representation of protein complexes in the Protein Ontology.Carol Bult, Harold Drabkin, Alexei Evsikov, Darren Natale, Cecilia Arighi, Natalia Roberts, Alan Ruttenberg, Peter D’Eustachio, Barry Smith, Judith Blake & Cathy Wu - 2011 - BMC Bioinformatics 12 (371):1-11.
    Representing species-specific proteins and protein complexes in ontologies that are both human and machine-readable facilitates the retrieval, analysis, and interpretation of genome-scale data sets. Although existing protin-centric informatics resources provide the biomedical research community with well-curated compendia of protein sequence and structure, these resources lack formal ontological representations of the relationships among the proteins themselves. The Protein Ontology (PRO) Consortium is filling this informatics resource gap by developing ontological representations and relationships among proteins and their variants and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  38.  20
    Protein translocation across mitochondrial membranes.Ulla Wienhues & Walter Neupert - 1992 - Bioessays 14 (1):17-23.
    Protein translocation across biological membranes is of fundamental importance for the biogenesis of organelles and in protein secretion. We will give an overview of the recent achievements in the understanding of protein translocation across mitochondrial membranes(1‐5). In particular we will focus on recently identified components of the mitochondrial import apparatus.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39.  19
    Kinesin proteins: A phylum of motors for microtubule‐based motility.Jonathan D. Moore & Sharyn A. Endow - 1996 - Bioessays 18 (3):207-219.
    The cellular processes of transport, division and, possibly, early development all involve microtubule‐based motors. Recent work shows that, unexpectedly, many of these cellular functions are carried out by different types of kinesin and kinesin‐related motor proteins. The kinesin proteins are a large and rapidly growing family of microtubule‐motor proteins that share a 340‐amino‐acid motor domain. Phylogenetic analysis of the conserved motor domains groups the kinesin proteins into a number of subfamilies, the members of which exhibit a common molecular organization and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  57
    Engineering Novel Proteins with Orthogonal tRNA: Artificial Causes that make a Difference.Janella Baxter - manuscript
    Model organisms, the use of green fluorescent proteins, and orthogonal transfer RNA are examples of artificial causes being used in biology. Recent work characterizing the research interests of biologists in terms of a common set of values has ruled out artificial causes as biologically interesting. For instance, Kenneth Waters argues that biologists are primarily interested in causes that actually obtain. Similarly, Marcel Weber argues that biologists are primarily concerned with biologically normal interventions. Both views express a widely received attitude about (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  12
    Protein splicing: Excision of intervening sequences at the protein level.Antony A. Cooper & To M. H. Stevens - 1993 - Bioessays 15 (10):667-674.
    Protein splicing is an extraordinary post‐translational reaction that removes an intact central “spacer” domain (Sp) from precursor proteins (N‐Sp‐C) while splicing together the N‐ and C‐domains of the precursor, via a peptide bond, to produce a new protein (N‐C). All of the available data on protein splicing fit a model in which these intervening sequences excise at the protein level via a self‐splicing mechanism. Several proteins have recently been discovered that undergo protein splicing, and in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  21
    Peptidylprolylisomerases, Protein Folders, or Scaffolders? The Example of FKBP51 and FKBP52.Theo Rein - 2020 - Bioessays 42 (7):1900250.
    Peptidylprolyl‐isomerases (PPIases) comprise of the protein families of FK506 binding proteins (FKBPs), cyclophilins, and parvulins. Their common feature is their ability to expedite the transition of peptidylprolyl bonds between the cis and the trans conformation. Thus, it seemed highly plausible that PPIase enzymatic activity is crucial for protein folding. However, this has been difficult to prove over the decades since their discovery. In parallel, more and more studies have discovered scaffolding functions of PPIases. This essay discusses the hypothesis (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  50
    Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins.Ronald E. Hileman, Jonathan R. Fromm, John M. Weiler & Robert J. Linhardt - 1998 - Bioessays 20 (2):156-167.
    Although interactions of proteins with glycosaminoglycans (GAGs), such as heparin and heparan sulphate, are of great biological importance, structural requirements for protein‐GAG binding have not been well‐characterised. Ionic interactions are important in promoting protein‐GAG binding. Polyelectrolyte theory suggests that much of the free energy of binding comes from entropically favourable release of cations from GAG chains. Despite their identical charges, arginine residues bind more tightly to GAGs than lysine residues. The spacing of these residues may determine protein‐GAG (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44. Protein Engineering; Principles and Practice, Edited by: JL Cleland and CS Craik.C. MacKellar - 1997 - Human Reproduction and Genetic Ethics 3 (1):17-17.
     
    Export citation  
     
    Bookmark  
  45.  38
    Are viruses a source of new protein folds for organisms? – Virosphere structure space and evolution.Aare Abroi & Julian Gough - 2011 - Bioessays 33 (8):626-635.
    A crucially important part of the biosphere – the virosphere – is too often overlooked. Inclusion of the virosphere into the global picture of protein structure space reveals that 63 protein domain superfamilies in viruses do not have any structural and evolutionary relatives in modern cellular organisms. More than half of these have functions which are not virus‐specific and thus might be a source of new folds and functions for cellular life. The number of viruses on the planet (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  46.  18
    Protein Topology Prediction Algorithms Systematically Investigated in the Yeast Saccharomyces cerevisiae.Uri Weill, Nir Cohen, Amir Fadel, Shifra Ben-Dor & Maya Schuldiner - 2019 - Bioessays 41 (8):1800252.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  29
    Parallel dynamics and evolution: Protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure.Joseph A. Marsh & Sarah A. Teichmann - 2014 - Bioessays 36 (2):209-218.
    Protein structure is dynamic: the intrinsic flexibility of polypeptides facilitates a range of conformational fluctuations, and individual protein chains can assemble into complexes. Proteins are also dynamic in evolution: significant variations in secondary, tertiary and quaternary structure can be observed among divergent members of a protein family. Recent work has highlighted intriguing similarities between these structural and evolutionary dynamics occurring at various levels. Here we review evidence showing how evolutionary changes in protein sequence and structure are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  24
    Driving Protein Conformational Cycles in Physiology and Disease: “Frustrated” Amino Acid Interaction Networks Define Dynamic Energy Landscapes.Rebecca N. D'Amico, Alec M. Murray & David D. Boehr - 2020 - Bioessays 42 (9):2000092.
    A general framework by which dynamic interactions within a protein will promote the necessary series of structural changes, or “conformational cycle,” required for function is proposed. It is suggested that the free‐energy landscape of a protein is biased toward this conformational cycle. Fluctuations into higher energy, although thermally accessible, conformations drive the conformational cycle forward. The amino acid interaction network is defined as those intraprotein interactions that contribute most to the free‐energy landscape. Some network connections are consistent in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49.  23
    Accessory protein function in the DNA polymerase III holoenzyme from E. coli.Mike O'Donnell - 1992 - Bioessays 14 (2):105-111.
    DNA polymerases which duplicate cellular chromosomes are multiprotein complexes. The individual functions of the many proteins required to duplicate a chromosome are not fully understood. The multiprotein complex which duplicates the Escherichia coli chromosome, DNA polymerase III holoenzyme (holoenzyme), contains a DNA polymerase subunit and nine accessory proteins. This report summarizes our current understanding of the individual functions of the accessory proteins within the holoenzyme, lending insight into why a chromosomal replicase needs such a complex structure.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  19
    G Protein Signaling Components in Filamentous Fungal Genomes.Jacqueline A. Servin, Asharie J. Campbell & Katherine A. Borkovich - 2012 - In Guenther Witzany (ed.), Biocommunication of Fungi. Dordrecht: Springer. pp. 21--38.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 994