Results for 'Deep Learning Gradients'

993 found
Order:
  1.  26
    Compressive Strength Prediction Using Coupled Deep Learning Model with Extreme Gradient Boosting Algorithm: Environmentally Friendly Concrete Incorporating Recycled Aggregate.Mayadah W. Falah, Sadaam Hadee Hussein, Mohammed Ayad Saad, Zainab Hasan Ali, Tan Huy Tran, Rania M. Ghoniem & Ahmed A. Ewees - 2022 - Complexity 2022:1-22.
    The application of recycled aggregate as a sustainable material in construction projects is considered a promising approach to decrease the carbon footprint of concrete structures. Prediction of compressive strength of environmentally friendly concrete containing recycled aggregate is important for understanding sustainable structures’ concrete behaviour. In this research, the capability of the deep learning neural network approach is examined on the simulation of CS of EF concrete. The developed approach is compared to the well-known artificial intelligence approaches named multivariate (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  28
    Detecting racial inequalities in criminal justice: towards an equitable deep learning approach for generating and interpreting racial categories using mugshots.Rahul Kumar Dass, Nick Petersen, Marisa Omori, Tamara Rice Lave & Ubbo Visser - 2023 - AI and Society 38 (2):897-918.
    Recent events have highlighted large-scale systemic racial disparities in U.S. criminal justice based on race and other demographic characteristics. Although criminological datasets are used to study and document the extent of such disparities, they often lack key information, including arrestees’ racial identification. As AI technologies are increasingly used by criminal justice agencies to make predictions about outcomes in bail, policing, and other decision-making, a growing literature suggests that the current implementation of these systems may perpetuate racial inequalities. In this paper, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  11
    Deep Symbolic Regression: Recovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients.Brenden Petersen, Larma K., Mundhenk Mikel Landajuela, Santiago T. Nathan, P. Claudio, Soo Kim, Kim K. & T. Joanne - 2021 - Arxiv:1912.04871 Cs, Stat.
    Discovering the underlying mathematical expressions describing a dataset is a core challenge for artificial intelligence. This is the problem of symbolic regression. Despite recent advances in training neural networks to solve complex tasks, deep learning approaches to symbolic regression are underexplored. We propose a framework that leverages deep learning for symbolic regression via a simple idea: use a large model to search the space of small models. Specifically, we use a recurrent neural network to emit a (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  4.  50
    DLD: An Optimized Chinese Speech Recognition Model Based on Deep Learning.Hong Lei, Yue Xiao, Yanchun Liang, Dalin Li & Heow Pueh Lee - 2022 - Complexity 2022:1-8.
    Speech recognition technology has played an indispensable role in realizing human-computer intelligent interaction. However, most of the current Chinese speech recognition systems are provided online or offline models with low accuracy and poor performance. To improve the performance of offline Chinese speech recognition, we propose a hybrid acoustic model of deep convolutional neural network, long short-term memory, and deep neural network. This model utilizes DCNN to reduce frequency variation and adds a batch normalization layer after its convolutional layer (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  13
    Modelling on Car-Sharing Serial Prediction Based on Machine Learning and Deep Learning.Nihad Brahimi, Huaping Zhang, Lin Dai & Jianzi Zhang - 2022 - Complexity 2022:1-20.
    The car-sharing system is a popular rental model for cars in shared use. It has become particularly attractive due to its flexibility; that is, the car can be rented and returned anywhere within one of the authorized parking slots. The main objective of this research work is to predict the car usage in parking stations and to investigate the factors that help to improve the prediction. Thus, new strategies can be designed to make more cars on the road and fewer (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  14
    Analysis of Feature Extraction and Anti-Interference of Face Image under Deep Reconstruction Network Algorithm.Jin Yang, Yuxuan Zhao, Shihao Yang, Xinxin Kang, Xinyan Cao & Xixin Cao - 2021 - Complexity 2021:1-15.
    In face recognition systems, highly robust facial feature representation and good classification algorithm performance can affect the effect of face recognition under unrestricted conditions. To explore the anti-interference performance of convolutional neural network reconstructed by deep learning framework in face image feature extraction and recognition, in the paper, first, the inception structure in the GoogleNet network and the residual error in the ResNet network structure are combined to construct a new deep reconstruction network algorithm, with the random (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  21
    No-Reference Stereoscopic Image Quality Assessment Based on Binocular Statistical Features and Machine Learning.Peng Xu, Man Guo, Lei Chen, Weifeng Hu, Qingshan Chen & Yujun Li - 2021 - Complexity 2021:1-14.
    Learning a deep structure representation for complex information networks is a vital research area, and assessing the quality of stereoscopic images or videos is challenging due to complex 3D quality factors. In this paper, we explore how to extract effective features to enhance the prediction accuracy of perceptual quality assessment. Inspired by the structure representation of the human visual system and the machine learning technique, we propose a no-reference quality assessment scheme for stereoscopic images. More specifically, the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  17
    Mutual Exclusivity in Pragmatic Agents.Xenia Ohmer, Michael Franke & Peter König - 2021 - Cognitive Science 46 (1):e13069.
    One of the great challenges in word learning is that words are typically uttered in a context with many potential referents. Children's tendency to associate novel words with novel referents, which is taken to reflect a mutual exclusivity (ME) bias, forms a useful disambiguation mechanism. We study semantic learning in pragmatic agents—combining the Rational Speech Act model with gradient‐based learning—and explore the conditions under which such agents show an ME bias. This approach provides a framework for investigating (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9. Deep learning and synthetic media.Raphaël Millière - 2022 - Synthese 200 (3):1-27.
    Deep learning algorithms are rapidly changing the way in which audiovisual media can be produced. Synthetic audiovisual media generated with deep learning—often subsumed colloquially under the label “deepfakes”—have a number of impressive characteristics; they are increasingly trivial to produce, and can be indistinguishable from real sounds and images recorded with a sensor. Much attention has been dedicated to ethical concerns raised by this technological development. Here, I focus instead on a set of issues related to the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  10.  26
    On the Impact of Interpretability Methods in Active Image Augmentation Method.Flávio Arthur Oliveira Santos, Cleber Zanchettin, Leonardo Nogueira Matos & Paulo Novais - 2022 - Logic Journal of the IGPL 30 (4):611-621.
    Robustness is a significant constraint in machine learning models. The performance of the algorithms must not deteriorate when training and testing with slightly different data. Deep neural network models achieve awe-inspiring results in a wide range of applications of computer vision. Still, in the presence of noise or region occlusion, some models exhibit inaccurate performance even with data handled in training. Besides, some experiments suggest deep learning models sometimes use incorrect parts of the input information to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11.  8
    Emotion Monitoring for Preschool Children Based on Face Recognition and Emotion Recognition Algorithms.Guiping Yu - 2021 - Complexity 2021:1-12.
    In this paper, we study the face recognition and emotion recognition algorithms to monitor the emotions of preschool children. For previous emotion recognition focusing on faces, we propose to obtain more comprehensive information from faces, gestures, and contexts. Using the deep learning approach, we design a more lightweight network structure to reduce the number of parameters and save computational resources. There are not only innovations in applications, but also algorithmic enhancements. And face annotation is performed on the dataset, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  31
    Influence of context availability and soundness in predicting soil moisture using the Context-Aware Data Mining approach.Anca Avram, Oliviu Matei, Camelia-M. Pintea & Petrica C. Pop - 2023 - Logic Journal of the IGPL 31 (4):762-774.
    Knowing the level of quality from which the context is no longer valuable in a Context-Aware Data Mining (CADM) system is an important information. The main goal of this research is to study the variations of the predictions in case of different levels of noise and missing context data in practical scenarios for predicting soil moisture. The research has been performed on two locations from the Transylvanian Plain, Romania and two locations from Canada. The values predicted for the soil moisture (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13. Deep Learning Opacity in Scientific Discovery.Eamon Duede - 2023 - Philosophy of Science 90 (5):1089 - 1099.
    Philosophers have recently focused on critical, epistemological challenges that arise from the opacity of deep neural networks. One might conclude from this literature that doing good science with opaque models is exceptionally challenging, if not impossible. Yet, this is hard to square with the recent boom in optimism for AI in science alongside a flood of recent scientific breakthroughs driven by AI methods. In this paper, I argue that the disconnect between philosophical pessimism and scientific optimism is driven by (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  14.  10
    Deep Learning in a Disorienting World.Jon F. Wergin - 2019 - Cambridge University Press.
    Much has been written about the escalating intolerance of worldviews other than one's own. Reasoned arguments based on facts and data seem to have little impact in our increasingly post-truth culture dominated by social media, fake news, tribalism, and identity politics. Recent advances in the study of human cognition, however, offer insights on how to counter these troubling social trends. In this book, psychologist Jon F. Wergin calls upon recent research in learning theory, social psychology, politics, and the arts (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  15.  35
    Deep Learning and Linguistic Representation.Shalom Lappin - 2021 - Chapman & Hall/Crc.
    The application of deep learning methods to problems in natural language processing has generated significant progress across a wide range of natural language processing tasks. For some of these applications, deep learning models now approach or surpass human performance. While the success of this approach has transformed the engineering methods of machine learning in artificial intelligence, the significance of these achievements for the modelling of human learning and representation remains unclear. Deep Learning (...)
    No categories
  16. Deep learning: A philosophical introduction.Cameron Buckner - 2019 - Philosophy Compass 14 (10):e12625.
    Deep learning is currently the most prominent and widely successful method in artificial intelligence. Despite having played an active role in earlier artificial intelligence and neural network research, philosophers have been largely silent on this technology so far. This is remarkable, given that deep learning neural networks have blown past predicted upper limits on artificial intelligence performance—recognizing complex objects in natural photographs and defeating world champions in strategy games as complex as Go and chess—yet there remains (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   48 citations  
  17. Deep learning and cognitive science.Pietro Perconti & Alessio Plebe - 2020 - Cognition 203:104365.
    In recent years, the family of algorithms collected under the term ``deep learning'' has revolutionized artificial intelligence, enabling machines to reach human-like performances in many complex cognitive tasks. Although deep learning models are grounded in the connectionist paradigm, their recent advances were basically developed with engineering goals in mind. Despite of their applied focus, deep learning models eventually seem fruitful for cognitive purposes. This can be thought as a kind of biological exaptation, where a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  18. From deep learning to rational machines: what the history of philosophy can teach us about the future of artifical intelligence.Cameron J. Buckner - 2024 - New York, NY: Oxford University Press.
    This book provides a framework for thinking about foundational philosophical questions surrounding machine learning as an approach to artificial intelligence. Specifically, it links recent breakthroughs in deep learning to classical empiricist philosophy of mind. In recent assessments of deep learning's current capabilities and future potential, prominent scientists have cited historical figures from the perennial philosophical debate between nativism and empiricism, which primarily concerns the origins of abstract knowledge. These empiricists were generally faculty psychologists; that is, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  19. Hybridized Deep Learning Model for Perfobond Rib Shear Strength Connector Prediction.Jamal Abdulrazzaq Khalaf, Abeer A. Majeed, Mohammed Suleman Aldlemy, Zainab Hasan Ali, Ahmed W. Al Zand, S. Adarsh, Aissa Bouaissi, Mohammed Majeed Hameed & Zaher Mundher Yaseen - 2021 - Complexity 2021:1-21.
    Accurate and reliable prediction of Perfobond Rib Shear Strength Connector is considered as a major issue in the structural engineering sector. Besides, selecting the most significant variables that have a major influence on PRSC in every important step for attaining economic and more accurate predictive models, this study investigates the capacity of deep learning neural network for shear strength prediction of PRSC. The proposed DLNN model is validated against support vector regression, artificial neural network, and M5 tree model. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  20.  46
    Deep Learning Meets Deep Democracy: Deliberative Governance and Responsible Innovation in Artificial Intelligence.Alexander Buhmann & Christian Fieseler - forthcoming - Business Ethics Quarterly:1-34.
    Responsible innovation in artificial intelligence calls for public deliberation: well-informed “deep democratic” debate that involves actors from the public, private, and civil society sectors in joint efforts to critically address the goals and means of AI. Adopting such an approach constitutes a challenge, however, due to the opacity of AI and strong knowledge boundaries between experts and citizens. This undermines trust in AI and undercuts key conditions for deliberation. We approach this challenge as a problem of situating the knowledge (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  21.  57
    Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks.Salama A. Mostafa, Bashar Ahmad Khalaf, Nafea Ali Majeed Alhammadi, Ali Mohammed Saleh Ahmed & Firas Mohammed Aswad - 2023 - Journal of Intelligent Systems 32 (1).
    With the rapid growth of informatics systems’ technology in this modern age, the Internet of Things (IoT) has become more valuable and vital to everyday life in many ways. IoT applications are now more popular than they used to be due to the availability of many gadgets that work as IoT enablers, including smartwatches, smartphones, security cameras, and smart sensors. However, the insecure nature of IoT devices has led to several difficulties, one of which is distributed denial-of-service (DDoS) attacks. IoT (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  22. Deep Learning as Method-Learning: Pragmatic Understanding, Epistemic Strategies and Design-Rules.Phillip H. Kieval & Oscar Westerblad - manuscript
    We claim that scientists working with deep learning (DL) models exhibit a form of pragmatic understanding that is not reducible to or dependent on explanation. This pragmatic understanding comprises a set of learned methodological principles that underlie DL model design-choices and secure their reliability. We illustrate this action-oriented pragmatic understanding with a case study of AlphaFold2, highlighting the interplay between background knowledge of a problem and methodological choices involving techniques for constraining how a model learns from data. Building (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23. Deep Learning Opacity, and the Ethical Accountability of AI Systems. A New Perspective.Gianfranco Basti & Giuseppe Vitiello - 2023 - In Raffaela Giovagnoli & Robert Lowe (eds.), The Logic of Social Practices II. Springer Nature Switzerland. pp. 21-73.
    In this paper we analyse the conditions for attributing to AI autonomous systems the ontological status of “artificial moral agents”, in the context of the “distributed responsibility” between humans and machines in Machine Ethics (ME). In order to address the fundamental issue in ME of the unavoidable “opacity” of their decisions with ethical/legal relevance, we start from the neuroethical evidence in cognitive science. In humans, the “transparency” and then the “ethical accountability” of their actions as responsible moral agents is not (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  24. Deep learning in law: early adaptation and legal word embeddings trained on large corpora.Ilias Chalkidis & Dimitrios Kampas - 2019 - Artificial Intelligence and Law 27 (2):171-198.
    Deep Learning has been widely used for tackling challenging natural language processing tasks over the recent years. Similarly, the application of Deep Neural Networks in legal analytics has increased significantly. In this survey, we study the early adaptation of Deep Learning in legal analytics focusing on three main fields; text classification, information extraction, and information retrieval. We focus on the semantic feature representations, a key instrument for the successful application of deep learning in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  25.  12
    Applying Deep Learning in the Training of Communication Design Talents Under University-Industrial Research Collaboration.Rui Zhou, Zhihua He, Xiaobiao Lu & Ying Gao - 2021 - Frontiers in Psychology 12.
    The purpose of the study was to solve the problem of the mismatching between the supply and demand of the talents that universities provide for society, whose major is communication design. The correlations between social post demand and university cultivation, as well as between social post demand and the demand indexes of enterprises for posts, are explored under the guidance of University-Industrial Research Collaboration. The backpropagation neural network is used, and the advantages of the Seasonal Autoregressive Integrated Moving Average model (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  49
    Understanding Deep Learning with Statistical Relevance.Tim Räz - 2022 - Philosophy of Science 89 (1):20-41.
    This paper argues that a notion of statistical explanation, based on Salmon’s statistical relevance model, can help us better understand deep neural networks. It is proved that homogeneous partitions, the core notion of Salmon’s model, are equivalent to minimal sufficient statistics, an important notion from statistical inference. This establishes a link to deep neural networks via the so-called Information Bottleneck method, an information-theoretic framework, according to which deep neural networks implicitly solve an optimization problem that generalizes minimal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  27.  54
    DeepRhole: deep learning for rhetorical role labeling of sentences in legal case documents.Paheli Bhattacharya, Shounak Paul, Kripabandhu Ghosh, Saptarshi Ghosh & Adam Wyner - 2021 - Artificial Intelligence and Law 31 (1):53-90.
    The task of rhetorical role labeling is to assign labels (such as Fact, Argument, Final Judgement, etc.) to sentences of a court case document. Rhetorical role labeling is an important problem in the field of Legal Analytics, since it can aid in various downstream tasks as well as enhances the readability of lengthy case documents. The task is challenging as case documents are highly various in structure and the rhetorical labels are often subjective. Previous works for automatic rhetorical role identification (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  28.  11
    Deep Learning-Aided Research and the Aim-of-Science Controversy.Yukinori Onishi - forthcoming - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie:1-19.
    The aim or goal of science has long been discussed by both philosophers of science and scientists themselves. In The Scientific Image (van Fraassen 1980), the aim of science is famously employed to characterize scientific realism and a version of anti-realism, called constructive empiricism. Since the publication of The Scientific Image, however, various changes have occurred in scientific practice. The increasing use of machine learning technology, especially deep learning (DL), is probably one of the major changes in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29. Computational Functionalism for the Deep Learning Era.Ezequiel López-Rubio - 2018 - Minds and Machines 28 (4):667-688.
    Deep learning is a kind of machine learning which happens in a certain type of artificial neural networks called deep networks. Artificial deep networks, which exhibit many similarities with biological ones, have consistently shown human-like performance in many intelligent tasks. This poses the question whether this performance is caused by such similarities. After reviewing the structure and learning processes of artificial and biological neural networks, we outline two important reasons for the success of (...) learning, namely the extraction of successively higher level features and the multiple layer structure, which are closely related to each other. Then some indications about the framing of this heated debate are given. After that, an assessment of the value of artificial deep networks as models of the human brain is given from the similarity perspective of model representation. Finally, a new version of computational functionalism is proposed which addresses the specificity of deep neural computation better than classic, program based computational functionalism. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  30.  19
    Deep Learning Based Emotion Recognition and Visualization of Figural Representation.Xiaofeng Lu - 2022 - Frontiers in Psychology 12.
    This exploration aims to study the emotion recognition of speech and graphic visualization of expressions of learners under the intelligent learning environment of the Internet. After comparing the performance of several neural network algorithms related to deep learning, an improved convolution neural network-Bi-directional Long Short-Term Memory algorithm is proposed, and a simulation experiment is conducted to verify the performance of this algorithm. The experimental results indicate that the Accuracy of CNN-BiLSTM algorithm reported here reaches 98.75%, which is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  23
    Deep learning for content-based image retrieval in FHE algorithms.Mustafa Musa Jaber & Sura Mahmood Abdullah - 2023 - Journal of Intelligent Systems 32 (1).
    Content-based image retrieval (CBIR) is a technique used to retrieve image from an image database. However, the CBIR process suffers from less accuracy to retrieve many images from an extensive image database and prove the privacy of images. The aim of this article is to address the issues of accuracy utilizing deep learning techniques such as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon–Kim–Kim–Song (CKKS). The system has been (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  32.  22
    A Deep Learning-Based Sentiment Classification Model for Real Online Consumption.Yang Su & Yan Shen - 2022 - Frontiers in Psychology 13.
    Most e-commerce platforms allow consumers to post product reviews, causing more and more consumers to get into the habit of reading reviews before they buy. These online reviews serve as an emotional feedback of consumers’ product experience and contain a lot of important information, but inevitably there are malicious or irrelevant reviews. It is especially important to discover and identify the real sentiment tendency in online reviews in a timely manner. Therefore, a deep learning-based real online consumer sentiment (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  13
    Deep Learning Image Feature Recognition Algorithm for Judgment on the Rationality of Landscape Planning and Design.Bin Hu - 2021 - Complexity 2021:1-15.
    This paper uses an improved deep learning algorithm to judge the rationality of the design of landscape image feature recognition. The preprocessing of the image is proposed to enhance the data. The deficiencies in landscape feature extraction are further addressed based on the new model. Then, the two-stage training method of the model is used to solve the problems of long training time and convergence difficulties in deep learning. Innovative methods for zoning and segmentation training of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  96
    Deep Learning Applied to Scientific Discovery: A Hot Interface with Philosophy of Science.Louis Vervoort, Henry Shevlin, Alexey A. Melnikov & Alexander Alodjants - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (2):339-351.
    We review publications in automated scientific discovery using deep learning, with the aim of shedding light on problems with strong connections to philosophy of science, of physics in particular. We show that core issues of philosophy of science, related, notably, to the nature of scientific theories; the nature of unification; and of causation loom large in scientific deep learning. Therefore, advances in deep learning could, and ideally should, have impact on philosophy of science, and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  35.  49
    Deep learning, education and the final stage of automation.Michael A. Peters - 2018 - Educational Philosophy and Theory 50 (6-7):549-553.
  36.  15
    Deep learning models and the limits of explainable artificial intelligence.Jens Christian Bjerring, Jakob Mainz & Lauritz Munch - 2025 - Asian Journal of Philosophy 4 (1):1-26.
    It has often been argued that we face a trade-off between accuracy and opacity in deep learning models. The idea is that we can only harness the accuracy of deep learning models by simultaneously accepting that the grounds for the models’ decision-making are epistemically opaque to us. In this paper, we ask the following question: what are the prospects of making deep learning models transparent without compromising on their accuracy? We argue that the answer (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37. Lemon Classification Using Deep Learning.Jawad Yousif AlZamily & Samy Salim Abu Naser - 2020 - International Journal of Academic Pedagogical Research (IJAPR) 3 (12):16-20.
    Abstract : Background: Vegetable agriculture is very important to human continued existence and remains a key driver of many economies worldwide, especially in underdeveloped and developing economies. Objectives: There is an increasing demand for food and cash crops, due to the increasing in world population and the challenges enforced by climate modifications, there is an urgent need to increase plant production while reducing costs. Methods: In this paper, Lemon classification approach is presented with a dataset that contains approximately 2,000 images (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  38. Deep-Learning-Based Multivariate Pattern Analysis (dMVPA): A Tutorial and a Toolbox.Karl M. Kuntzelman, Jacob M. Williams, Phui Cheng Lim, Ashok Samal, Prahalada K. Rao & Matthew R. Johnson - 2021 - Frontiers in Human Neuroscience 15.
    In recent years, multivariate pattern analysis has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging, electroencephalography, and other neuroimaging methodologies. In a similar time frame, “deep learning” has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39. Quantum Deep Learning Triuniverse.Angus McCoss - 2016 - Journal of Quantum Information Science 6 (4).
    An original quantum foundations concept of a deep learning computational Universe is introduced. The fundamental information of the Universe (or Triuniverse)is postulated to evolve about itself in a Red, Green and Blue (RGB) tricoloured stable self-mutuality in three information processing loops. The colour is a non-optical information label. The information processing loops form a feedback-reinforced deep learning macrocycle with trefoil knot topology. Fundamental information processing is driven by ψ-Epistemic Drive, the Natural appetite for information selected for (...)
     
    Export citation  
     
    Bookmark  
  40.  65
    Applying Deep Learning Methods on Time-Series Data for Forecasting COVID-19 in Egypt, Kuwait, and Saudi Arabia.Nahla F. Omran, Sara F. Abd-el Ghany, Hager Saleh, Abdelmgeid A. Ali, Abdu Gumaei & Mabrook Al-Rakhami - 2021 - Complexity 2021 (1):6686745.
    The novel coronavirus disease is regarded as one of the most imminent disease outbreaks which threaten public health on various levels worldwide. Because of the unpredictable outbreak nature and the virus’s pandemic intensity, people are experiencing depression, anxiety, and other strain reactions. The response to prevent and control the new coronavirus pneumonia has reached a crucial point. Therefore, it is essential—for safety and prevention purposes—to promptly predict and forecast the virus outbreak in the course of this troublesome time to have (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  15
    Deep learning of shared perceptual representations for familiar and unfamiliar faces: Reply to commentaries.Nicholas M. Blauch, Marlene Behrmann & David C. Plaut - 2021 - Cognition 208 (C):104484.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42.  13
    Deep learning course development and evaluation of artificial intelligence in vocational senior high schools.Chih-Cheng Tsai, Chih-Chao Chung, Yuh-Ming Cheng & Shi-Jer Lou - 2022 - Frontiers in Psychology 13.
    This study aimed to develop cross-domain deep learning courses of artificial intelligence in vocational senior high schools and explore its impact on students’ learning effects. It initially adopted a literature review to develop a cross-domain SPOC-AIoT Course with SPOC and the Double Diamond 4D model in vocational senior high schools. Afterward, it adopted participatory action research and a questionnaire survey and conducted analyses on the various aspects of the technology acceptance model by SmartPLS. Further, this study explored (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  32
    A Survey on Deep Learning-Based Short/Zero-Calibration Approaches for EEG-Based Brain–Computer Interfaces.Wonjun Ko, Eunjin Jeon, Seungwoo Jeong, Jaeun Phyo & Heung-Il Suk - 2021 - Frontiers in Human Neuroscience 15:643386.
    Brain–computer interfaces (BCIs) utilizing machine learning techniques are an emerging technology that enables a communication pathway between a user and an external system, such as a computer. Owing to its practicality, electroencephalography (EEG) is one of the most widely used measurements for BCI. However, EEG has complex patterns and EEG-based BCIs mostly involve a cost/time-consuming calibration phase; thus, acquiring sufficient EEG data is rarely possible. Recently, deep learning (DL) has had a theoretical/practical impact on BCI research because (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  14
    Students’ Entire Deep Learning Personality Model and Perceived Teachers’ Emotional Support.Enyun Liu, Jingxian Zhao & Noorzareith Sofeia - 2022 - Frontiers in Psychology 12.
    In recent years, deep learning as the requirement of higher education for students has attracted the attention of many scholars, and previous studies focused on defining deep learning as the deep processing of knowledge of the brain, however, in the process of knowledge processing, the brain not only involves the deep processing of information but also participates in learning consciously and emotionally. Therefore, this research proposed a four-factor model hypothesis for deep (...) that includes deep learning investment, deep cognitive-emotional experience, deep information processing, and deep learning meta-cognitive. In addition, the research proposed teachers’ emotional support perceived by students has an effect on the four factors of deep learning. Through SPSS 26 and AMOS 24, this research has verified the four-factor model of deep learning applying exploratory factor analysis and confirmatory factor analysis and verified that the perceived teacher emotional support has an impact on the four factors of students’ deep learning using the SEM. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Potato Classification Using Deep Learning.Abeer A. Elsharif, Ibtesam M. Dheir, Alaa Soliman Abu Mettleq & Samy S. Abu-Naser - 2020 - International Journal of Academic Pedagogical Research (IJAPR) 3 (12):1-8.
    Abstract: Potatoes are edible tubers, available worldwide and all year long. They are relatively cheap to grow, rich in nutrients, and they can make a delicious treat. The humble potato has fallen in popularity in recent years, due to the interest in low-carb foods. However, the fiber, vitamins, minerals, and phytochemicals it provides can help ward off disease and benefit human health. They are an important staple food in many countries around the world. There are an estimated 200 varieties of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   64 citations  
  46. Deep Learning-Based Spectrum Management to Enhance the Performance of Cognitive Radio Network Using MobileNet.Sairam M. V. S. - 2024 - Iconic Research and Engineering Journals 8 (6):274-279.
    No categories
     
    Export citation  
     
    Bookmark  
  47.  33
    A novel deep learning approach for diagnosing Alzheimer's disease based on eye-tracking data.Jinglin Sun, Yu Liu, Hao Wu, Peiguang Jing & Yong Ji - 2022 - Frontiers in Human Neuroscience 16:972773.
    Eye-tracking technology has become a powerful tool for biomedical-related applications due to its simplicity of operation and low requirements on patient language skills. This study aims to use the machine-learning models and deep-learning networks to identify key features of eye movements in Alzheimer's Disease (AD) under specific visual tasks, thereby facilitating computer-aided diagnosis of AD. Firstly, a three-dimensional (3D) visuospatial memory task is designed to provide participants with visual stimuli while their eye-movement data are recorded and used (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  31
    Deep Learning- and Word Embedding-Based Heterogeneous Classifier Ensembles for Text Classification.Zeynep H. Kilimci & Selim Akyokus - 2018 - Complexity 2018:1-10.
    The use of ensemble learning, deep learning, and effective document representation methods is currently some of the most common trends to improve the overall accuracy of a text classification/categorization system. Ensemble learning is an approach to raise the overall accuracy of a classification system by utilizing multiple classifiers. Deep learning-based methods provide better results in many applications when compared with the other conventional machine learning algorithms. Word embeddings enable representation of words learned from (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  49.  19
    Deep Learning-Based Intelligent Robot in Sentencing.Xuan Chen - 2022 - Frontiers in Psychology 13.
    This work aims to explore the application of deep learning-based artificial intelligence technology in sentencing, to promote the reform and innovation of the judicial system. First, the concept and the principles of sentencing are introduced, and the deep learning model of intelligent robot in trials is proposed. According to related concepts, the issues that need to be solved in artificial intelligence sentencing based on deep learning are introduced. The deep learning model is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  17
    Applying Deep Learning Techniques to Estimate Patterns of Musical Gesture.David Dalmazzo, George Waddell & Rafael Ramírez - 2021 - Frontiers in Psychology 11.
    Repetitive practice is one of the most important factors in improving the performance of motor skills. This paper focuses on the analysis and classification of forearm gestures in the context of violin playing. We recorded five experts and three students performing eight traditional classical violin bow-strokes: martelé, staccato, detaché, ricochet, legato, trémolo, collé, and col legno. To record inertial motion information, we utilized the Myo sensor, which reports a multidimensional time-series signal. We synchronized inertial motion recordings with audio data to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 993