Order:
  1. Deep Learning Opacity in Scientific Discovery.Eamon Duede - 2023 - Philosophy of Science 90 (5):1089 - 1099.
    Philosophers have recently focused on critical, epistemological challenges that arise from the opacity of deep neural networks. One might conclude from this literature that doing good science with opaque models is exceptionally challenging, if not impossible. Yet, this is hard to square with the recent boom in optimism for AI in science alongside a flood of recent scientific breakthroughs driven by AI methods. In this paper, I argue that the disconnect between philosophical pessimism and scientific optimism is driven by a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  2. Instruments, agents, and artificial intelligence: novel epistemic categories of reliability.Eamon Duede - 2022 - Synthese 200 (6):1-20.
    Deep learning (DL) has become increasingly central to science, primarily due to its capacity to quickly, efficiently, and accurately predict and classify phenomena of scientific interest. This paper seeks to understand the principles that underwrite scientists’ epistemic entitlement to rely on DL in the first place and argues that these principles are philosophically novel. The question of this paper is not whether scientists can be justified in trusting in the reliability of DL. While today’s artificial intelligence exhibits characteristics common to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  3. Apriori Knowledge in an Era of Computational Opacity: The Role of AI in Mathematical Discovery.Eamon Duede & Kevin Davey - forthcoming - Philosophy of Science.
    Can we acquire apriori knowledge of mathematical facts from the outputs of computer programs? People like Burge have argued (correctly in our opinion) that, for example, Appel and Haken acquired apriori knowledge of the Four Color Theorem from their computer program insofar as their program simply automated human forms of mathematical reasoning. However, unlike such programs, we argue that the opacity of modern LLMs and DNNs creates obstacles in obtaining apriori mathematical knowledge from them in similar ways. We claim though (...)
    Direct download  
     
    Export citation  
     
    Bookmark