Results for 'explanation, ideals of proof, mathematical practice, purity'

972 found
Order:
  1.  79
    Impurity in Contemporary Mathematics.Ellen Lehet - 2021 - Notre Dame Journal of Formal Logic 62 (1):67-82.
    Purity has been recognized as an ideal of proof. In this paper, I consider whether purity continues to have value in contemporary mathematics. The topics (e.g., algebraic topology, algebraic geometry, category theory) and methods of contemporary mathematics often favor unification and generality, values that are more often associated with impurity rather than purity. I will demonstrate this by discussing several examples of methods and proofs that highlight the epistemic significance of unification and generality. First, I discuss the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Purity as an ideal of proof.Michael Detlefsen - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 179-197.
    Various ideals of purity are surveyed and discussed. These include the classical Aristotelian ideal, as well as certain neo-classical and contemporary ideals. The focus is on a type of purity ideal I call topical purity. This is purity which emphasizes a certain symmetry between the conceptual resources used to prove a theorem and those needed for the clarification of its content. The basic idea is that the resources of proof ought ideally to be restricted (...)
     
    Export citation  
     
    Bookmark   20 citations  
  3. Purity as an ideal of proof.Michael Detlefsen - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 179--197.
    No categories
     
    Export citation  
     
    Bookmark   1 citation  
  4. 7.1 Purity as an ideal of proof.Michael Detlefsen - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 179.
    This is a paper on a type of purity of proof I call topical purity. This is purity which, practically speaking, enforces a certain symmetry between the conceptual resources used to prove a theorem and those needed for the clarification of its content. The basic idea is that the resources of proof ought ideally to be restricted to those which determine its content. -/- For some, this has been regarded as an epistemic ideal concerning the type of (...)
     
    Export citation  
     
    Bookmark  
  5. Précis de philosophie de la logique et des mathématiques, Volume 2, philosophie des mathématiques.Andrew Arana & Marco Panza (eds.) - 2022 - Paris: Editions de la Sorbonne.
    The project of this Précis de philosophie de la logique et des mathématiques (vol. 1 under the direction of F. Poggiolesi and P. Wagner, vol. 2 under the direction of A. Arana and M. Panza) aims to offer a rich, systematic and clear introduction to the main contemporary debates in the philosophy of mathematics and logic. The two volumes bring together the contributions of thirty researchers (twelve for the philosophy of logic and eighteen for the philosophy of mathematics), specialists in (...)
     
    Export citation  
     
    Bookmark  
  6.  53
    Formal Ontology and Mathematics. A Case Study on the Identity of Proofs.Matteo Bianchetti & Giorgio Venturi - 2023 - Topoi 42 (1):307-321.
    We propose a novel, ontological approach to studying mathematical propositions and proofs. By “ontological approach” we refer to the study of the categories of beings or concepts that, in their practice, mathematicians isolate as fruitful for the advancement of their scientific activity (like discovering and proving theorems, formulating conjectures, and providing explanations). We do so by developing what we call a “formal ontology” of proofs using semantic modeling tools (like RDF and OWL) developed by the computer science community. In (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7. Proof, Explanation, and Justification in Mathematical Practice.Moti Mizrahi - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (4):551-568.
    In this paper, I propose that applying the methods of data science to “the problem of whether mathematical explanations occur within mathematics itself” (Mancosu 2018) might be a fruitful way to shed new light on the problem. By carefully selecting indicator words for explanation and justification, and then systematically searching for these indicators in databases of scholarly works in mathematics, we can get an idea of how mathematicians use these terms in mathematical practice and with what frequency. The (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Ground and Explanation in Mathematics.Marc Lange - 2019 - Philosophers' Imprint 19.
    This paper explores whether there is any relation between mathematical proofs that specify the grounds of the theorem being proved and mathematical proofs that explain why the theorem obtains. The paper argues that a mathematical fact’s grounds do not, simply by virtue of grounding it, thereby explain why that fact obtains. It argues that oftentimes, a proof specifying a mathematical fact’s grounds fails to explain why that fact obtains whereas any explanation of the fact does not (...)
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  9. On the alleged simplicity of impure proof.Andrew Arana - 2017 - In Roman Kossak & Philip Ording (eds.), Simplicity: Ideals of Practice in Mathematics and the Arts. Springer. pp. 207-226.
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical statements (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  10. Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  11. Teaching and Learning Guide for: Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
  12. Mathematical Explanation beyond Explanatory Proof.William D’Alessandro - 2017 - British Journal for the Philosophy of Science 71 (2):581-603.
    Much recent work on mathematical explanation has presupposed that the phenomenon involves explanatory proofs in an essential way. I argue that this view, ‘proof chauvinism’, is false. I then look in some detail at the explanation of the solvability of polynomial equations provided by Galois theory, which has often been thought to revolve around an explanatory proof. The article concludes with some general worries about the effects of chauvinism on the theory of mathematical explanation. 1Introduction 2Why I Am (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  13. Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Explanation in Mathematical Practice.David Sandborg - 1997 - Dissertation, University of Pittsburgh
    Philosophers have paid little attention to mathematical explanations . I present a variety of examples of mathematical explanation and examine two cases in detail. I argue that mathematical explanations have important implications for the philosophy of mathematics and of science. ;The first case study compares many proofs of Pick's theorem, a simple geometrical result. Though a simple proof surfaces to establish the result, some of the proofs explain the result better than others. The second case study comes (...)
     
    Export citation  
     
    Bookmark   3 citations  
  15.  72
    Explanation in mathematical conversations: An empirical investigation.Alison Pease, Andrew Aberdein & Ursula Martin - 2019 - Philosophical Transactions of the Royal Society A 377.
    Analysis of online mathematics forums can help reveal how explanation is used by mathematicians; we contend that this use of explanation may help to provide an informal conceptualization of simplicity. We extracted six conjectures from recent philosophical work on the occurrence and characteristics of explanation in mathematics. We then tested these conjectures against a corpus derived from online mathematical discussions. To this end, we employed two techniques, one based on indicator terms, the other on a random sample of comments (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  16.  41
    The Design of Mathematical Language.Jeremy Avigad - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 3151-3189.
    As idealized descriptions of mathematical language, there is a sense in which formal systems specify too little, and there is a sense in which they specify too much. On the one hand, formal languages fail to account for a number of features of informal mathematical language that are essential to the communicative and inferential goals of the subject. On the other hand, many of these features are independent of the choice of a formal foundation, so grounding their analysis (...)
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  17.  12
    (1 other version)Non-Formal Properties of Real Mathematical Proofs.Jean Paul Van Bendegem - 1988 - PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association 1988 (1):249-254.
    Suppose you attend a seminar where a mathematician presents a proof to some of his colleagues. Suppose further that what he is proving is an important mathematical statement Now the following happens: as the mathematician proceeds, his audience is amazed at first, then becomes angry and finally ends up disturbing the lecture (some walk out, some laugh, …). If in addition, you see that the proof he is presenting is formally speaking (nearly) correct, would you say you are witnessing (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  18.  46
    Purity and Explanation: Essentially Linked?Andrew Arana - 2023 - In Carl Posy & Yemima Ben-Menahem (eds.), Mathematical Knowledge, Objects and Applications: Essays in Memory of Mark Steiner. Springer. pp. 25-39.
    In his 1978 paper “Mathematical Explanation”, Mark Steiner attempts to modernize the Aristotelian idea that to explain a mathematical statement is to deduce it from the essence of entities figuring in the statement, by replacing talk of essences with talk of “characterizing properties”. The language Steiner uses is reminiscent of language used for proofs deemed “pure”, such as Selberg and Erdős’ elementary proofs of the prime number theorem avoiding the complex analysis of earlier proofs. Hilbert characterized pure proofs (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Knowledge of proofs.Peter Pagin - 1994 - Topoi 13 (2):93-100.
    If proofs are nothing more than truth makers, then there is no force in the standard argument against classical logic (there is no guarantee that there is either a proof forA or a proof fornot A). The standard intuitionistic conception of a mathematical proof is stronger: there are epistemic constraints on proofs. But the idea that proofs must be recognizable as such by us, with our actual capacities, is incompatible with the standard intuitionistic explanations of the meanings of the (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  20.  32
    Revisiting the question about proof: philosophical theory, history, and mathematical practice.Norma Goethe - 2008 - Manuscrito 31 (1):361-386.
    This paper revisits some of Chateaubriand’s critical considerations with regard to representing our reasoning practices in logic and mathematics by means of “idealized syntax”. I focus on the persistently critical side of these considerations which aim to prepare the ground for “an interesting epistemology of logic and mathematics” that ought to make room for understanding the pragmatic dimensions of proofs as explanatory rational displays. First, I discuss the 20th century “syntactic conception” of the logical and the underlying set of values (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  21.  42
    Ontological Purity for Formal Proofs.Robin Martinot - 2024 - Review of Symbolic Logic 17 (2):395-434.
    Purity is known as an ideal of proof that restricts a proof to notions belonging to the ‘content’ of the theorem. In this paper, our main interest is to develop a conception of purity for formal (natural deduction) proofs. We develop two new notions of purity: one based on an ontological notion of the content of a theorem, and one based on the notions of surrogate ontological content and structural content. From there, we characterize which (classical) first-order (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22. Idéaux de preuve : explication et pureté.Andrew Arana - 2022 - In Andrew Arana & Marco Panza (eds.), Précis de philosophie de la logique et des mathématiques, Volume 2, philosophie des mathématiques. Paris: Editions de la Sorbonne. pp. 387-425.
    Why do mathematics often give several proofs of the same theorem? This is the question raised in this article, introducing the notion of an epistemic ideal and discussing two such ideals, the explanatoriness and purity of proof.
    Direct download  
     
    Export citation  
     
    Bookmark  
  23.  28
    Using Crowdsourced Mathematics to Understand Mathematical Practice.Alison Pease, Ursula Martin, Fenner Stanley Tanswell & Andrew Aberdein - 2020 - ZDM 52 (6):1087-1098.
    Records of online collaborative mathematical activity provide us with a novel, rich, searchable, accessible and sizeable source of data for empirical investigations into mathematical practice. In this paper we discuss how the resources of crowdsourced mathematics can be used to help formulate and answer questions about mathematical practice, and what their limitations might be. We describe quantitative approaches to studying crowdsourced mathematics, reviewing work from cognitive history (comparing individual and collaborative proofs); social psychology (on the prospects for (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  24.  37
    Finite Methods in Mathematical Practice.Peter Schuster & Laura Crosilla - 2014 - In Godehard Link (ed.), Formalism and Beyond: On the Nature of Mathematical Discourse. Boston: De Gruyter. pp. 351-410.
    In the present contribution we look at the legacy of Hilbert's programme in some recent developments in mathematics. Hilbert's ideas have seen new life in generalised and relativised forms by the hands of proof theorists and have been a source of motivation for the so--called reverse mathematics programme initiated by H. Friedman and S. Simpson. More recently Hilbert's programme has inspired T. Coquand and H. Lombardi to undertake a new approach to constructive algebra in which strong emphasis is laid on (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  39
    Rigour and Thought Experiments: Burgess and Norton.James Robert Brown - 2022 - Axiomathes 32 (1):7-28.
    This article discusses the important and influential views of John Burgess on the nature of mathematical rigour and John Norton on the nature of thought experiments. Their accounts turn out to be surprisingly similar in spite of different subject matters. Among other things both require a reconstruction of the initial proof or thought experiment in order to officially evaluate them, even though we almost never do this in practice. The views of each are plausible and seem to solve interesting (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  26.  50
    Proofs, Mathematical Practice and Argumentation.Begoña Carrascal - 2015 - Argumentation 29 (3):305-324.
    In argumentation studies, almost all theoretical proposals are applied, in general, to the analysis and evaluation of argumentative products, but little attention has been paid to the creative process of arguing. Mathematics can be used as a clear example to illustrate some significant theoretical differences between mathematical practice and the products of it, to differentiate the distinct components of the arguments, and to emphasize the need to address the different types of argumentative discourse and argumentative situation in the practice. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  27.  54
    Decision Theory, Relative Plausibility and the Criminal Standard of Proof.Alex Biedermann, David Caruso & Kyriakos N. Kotsoglou - 2020 - Criminal Law and Philosophy 15 (2):131-157.
    The evolution of the understanding of evidence-based proof and decision processes in the law, especially criminal law, and standards of proof in this area, has a long-standing and controversial history. Competing accounts cause the legal scholarship to engage in critical and thoughtful exchanges. Some of the divergent views reflect different methodological perspectives similarly recognized in other fields, such as applied psychology and economy, and the broader interdisciplinary research fields of judgment and decision-making, system analysis and decision science. One such methodological (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  28. Plans and planning in mathematical proofs.Yacin Hamami & Rebecca Lea Morris - 2020 - Review of Symbolic Logic 14 (4):1030-1065.
    In practice, mathematical proofs are most often the result of careful planning by the agents who produced them. As a consequence, each mathematical proof inherits a plan in virtue of the way it is produced, a plan which underlies its “architecture” or “unity”. This paper provides an account of plans and planning in the context of mathematical proofs. The approach adopted here consists in looking for these notions not in mathematical proofs themselves, but in the agents (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  29.  61
    Wittgenstein-- rules, grammar, and necessity: essays and exegesis of 185-242.Gordon P. Baker - 2010 - Malden, Mass.: Wiley-Blackwell. Edited by P. M. S. Hacker.
    Analytical commentary -- Fruits upon one tree -- The continuation of the early draft into philosophy of mathematics -- Hidden isomorphism -- A common methodology -- The flatness of philosophical grammar -- Following a rule 185-242 -- Introduction to the exegesis -- Rules and grammar -- The tractatus and rules of logical syntax -- From logical syntax to philosophical grammar -- Rules and rule-formulations -- Philosophy and grammar -- The scope of grammar -- Some morals -- Exegesis 185-8 -- Accord (...)
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  30.  81
    Confronting Ideals of Proof with the Ways of Proving of the Research Mathematician.Norma B. Goethe & Michèle Friend - 2010 - Studia Logica 96 (2):273-288.
    In this paper, we discuss the prevailing view amongst philosophers and many mathematicians concerning mathematical proof. Following Cellucci, we call the prevailing view the “axiomatic conception” of proof. The conception includes the ideas that: a proof is finite, it proceeds from axioms and it is the final word on the matter of the conclusion. This received view can be traced back to Frege, Hilbert and Gentzen, amongst others, and is prevalent in both mathematical text books and logic text (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  31.  55
    Foundation of Mathematics between Theory and Practice.Giorgio Venturi - 2014 - Philosophia Scientiae 18 (1):45-80.
    In this article I propose to look at set theory not only as a founda­tion of mathematics in a traditional sense, but as a foundation for mathemat­ical practice. For this purpose I distinguish between a standard, ontological, set theoretical foundation that aims to find a set theoretical surrogate to every mathematical object, and a practical one that tries to explain mathematical phenomena, giving necessary and sufficient conditions for the proof of mathematical propositions. I will present some example (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  32.  95
    Do mathematical explanations have instrumental value?Rebecca Lea Morris - 2019 - Synthese (2):1-20.
    Scientific explanations are widely recognized to have instrumental value by helping scientists make predictions and control their environment. In this paper I raise, and provide a first analysis of, the question whether explanatory proofs in mathematics have analogous instrumental value. I first identify an important goal in mathematical practice: reusing resources from existing proofs to solve new problems. I then consider the more specific question: do explanatory proofs have instrumental value by promoting reuse of the resources they contain? In (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  33.  7
    Elements of Purity.Andrew Arana - 2024 - Cambridge: Cambridge University Press.
    A proof of a theorem can be said to be pure if it draws only on what is 'close' or 'intrinsic' to that theorem. In this Element we will investigate the apparent preference for pure proofs that has persisted in mathematics since antiquity, alongside a competing preference for impurity. In Section 1, we present two examples of purity, from geometry and number theory. In Section 2, we give a brief history of purity in mathematics. In Section 3, we (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34. Mathematical Inference and Logical Inference.Yacin Hamami - 2018 - Review of Symbolic Logic 11 (4):665-704.
    The deviation of mathematical proof—proof in mathematical practice—from the ideal of formal proof—proof in formal logic—has led many philosophers of mathematics to reconsider the commonly accepted view according to which the notion of formal proof provides an accurate descriptive account of mathematical proof. This, in turn, has motivated a search for alternative accounts of mathematical proof purporting to be more faithful to the reality of mathematical practice. Yet, in order to develop and evaluate such alternative (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  35.  35
    Mathematical Explanation: Epistemic Aims and Diverging Assessments.Joachim Frans & Bart Van Kerkhove - 2023 - Global Philosophy 33 (2):1-26.
    Mathematicians suggest that some proofs are valued for their explanatory value. This has led to a philosophical debate about the distinction between explanatory and non-explanatory proofs. In this paper, we explore whether contrasting views about the explanatory value of proof are possible and how to understand these diverging assessments. By considering an epistemic and contextual conception of explanation, we can make sense of disagreements about explanatoriness in mathematics by identifying differences in the background knowledge, skill corpus, or epistemic aims of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  27
    Anti-foundationalist Philosophy of Mathematics and Mathematical Proofs.Stanisław Krajewski - 2020 - Studia Humana 9 (3-4):154-164.
    The Euclidean ideal of mathematics as well as all the foundational schools in the philosophy of mathematics have been contested by the new approach, called the “maverick” trend in the philosophy of mathematics. Several points made by its main representatives are mentioned – from the revisability of actual proofs to the stress on real mathematical practice as opposed to its idealized reconstruction. Main features of real proofs are then mentioned; for example, whether they are convincing, understandable, and/or explanatory. Therefore, (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  37. The Arbitrariness of Symmetry in Mathematical Proofs.Melisa Vivanco - 2024 - Revista de Humanidades de Valparaíso 25:129-148.
    Symmetry is not an inherent characteristic of mathematical proofs; instead, it is a property that arbitrarily manifests in different modes of presentation. This arbitrariness leads to the conclusion that symmetry cannot be part of the defining or essential properties that characterize proofs. Consequently, contrary to some authors’ claims, symmetry does not significantly contribute to the validity, accuracy, or soundness of mathematical proofs. What is more, it does not even play any critical role in heuristic aspects such as explanatory (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  38. A Noetic Account of Explanation in Mathematics.William D’Alessandro & Ellen Lehet - forthcoming - Philosophical Quarterly.
    We defend a noetic account of intramathematical explanation. On this view, a piece of mathematics is explanatory just in case it produces understanding of an appropriate type. We motivate the view by presenting some appealing features of noeticism. We then discuss and criticize the most prominent extant version of noeticism, due to Inglis and Mejía Ramos, which identifies explanatory understanding with the possession of well-organized cognitive schemas. Finally, we present a novel noetic account. On our view, explanatory understanding arises from (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  39.  70
    Mathematical Explanation in Practice.Ellen Lehet - 2021 - Axiomathes 31 (5):553-574.
    The connection between understanding and explanation has recently been of interest to philosophers. Inglis and Mejía-Ramos (Synthese, 2019) propose that within mathematics, we should accept a functional account of explanation that characterizes explanations as those things that produce understanding. In this paper, I start with the assumption that this view of mathematical explanation is correct and consider what we can consequently learn about mathematical explanation. I argue that this view of explanation suggests that we should shift the question (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  40.  25
    Mathematical Proofs in Practice: Revisiting the reliability of published mathematical proofs.Joachim Frans & Laszlo Kosolosky - 2014 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 29 (3):345-360.
    Mathematics seems to have a special status when compared to other areas of human knowledge. This special status is linked with the role of proof. Mathematicians often believe that this type of argumentation leaves no room for errors and unclarity. Philosophers of mathematics have differentiated between absolutist and fallibilist views on mathematical knowledge, and argued that these views are related to whether one looks at mathematics-in-the-making or finished mathematics. In this paper we take a closer look at mathematical (...)
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  41. Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  42.  22
    Arguing Around Mathematical Proofs.Michel Dufour - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 61-76.
    More or less explicitly inspired by the Aristotelian classification of arguments, a wide tradition makes a sharp distinction between argument and proof. Ch. Perelman and R. Johnson, among others, share this view based on the principle that the conclusion of an argument is uncertain while the conclusion of a proof is certain. Producing proof is certainly a major part of mathematical activity. Yet, in practice, mathematicians, expert or beginner, argue about mathematical proofs. This happens during the search for (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  43.  30
    From Logic to Practice: Italian Studies in the Philosophy of Mathematics.Giorgio Venturi, Marco Panza & Gabriele Lolli (eds.) - 2014 - Cham: Springer International Publishing.
    In the Tractatus, it is stated that questions about logical formatting cannot be meaningfully formulated, since it is precisely the application of logical rules which enables the formulation of a question whatsoever; analogously, Wittgenstein’s celebrated infinite regress argument on rule-following seems to undermine any explanation of deduction, as relying on a logical argument. On the other hand, some recent mathematical developments of the Curry-Howard bridge between proof theory and type theory address the issue of describing the “subjective” side of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  44.  61
    How to Frame Understanding in Mathematics: A Case Study Using Extremal Proofs.Merlin Carl, Marcos Cramer, Bernhard Fisseni, Deniz Sarikaya & Bernhard Schröder - 2021 - Axiomathes 31 (5):649-676.
    The frame concept from linguistics, cognitive science and artificial intelligence is a theoretical tool to model how explicitly given information is combined with expectations deriving from background knowledge. In this paper, we show how the frame concept can be fruitfully applied to analyze the notion of mathematical understanding. Our analysis additionally integrates insights from the hermeneutic tradition of philosophy as well as Schmid’s ideal genetic model of narrative constitution. We illustrate the practical applicability of our theoretical analysis through a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  45.  77
    Pi on Earth, or Mathematics in the Real World.Bart Van Kerkhove & Jean Paul Van Bendegem - 2008 - Erkenntnis 68 (3):421-435.
    We explore aspects of an experimental approach to mathematical proof, most notably number crunching, or the verification of subsequent particular cases of universal propositions. Since the rise of the computer age, this technique has indeed conquered practice, although it implies the abandonment of the ideal of absolute certainty. It seems that also in mathematical research, the qualitative criterion of effectiveness, i.e. to reach one’s goals, gets increasingly balanced against the quantitative one of efficiency, i.e. to minimize one’s means/ends (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  46. Purity in Arithmetic: some Formal and Informal Issues.Andrew Arana - 2014 - In Godehard Link (ed.), Formalism and Beyond: On the Nature of Mathematical Discourse. Boston: De Gruyter. pp. 315-336.
    Over the years many mathematicians have voiced a preference for proofs that stay “close” to the statements being proved, avoiding “foreign”, “extraneous”, or “remote” considerations. Such proofs have come to be known as “pure”. Purity issues have arisen repeatedly in the practice of arithmetic; a famous instance is the question of complex-analytic considerations in the proof of the prime number theorem. This article surveys several such issues, and discusses ways in which logical considerations shed light on these issues.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  47.  73
    The role of testimony in mathematics.Line Edslev Andersen, Hanne Andersen & Henrik Kragh Sørensen - 2020 - Synthese 199 (1-2):859-870.
    Mathematicians appear to have quite high standards for when they will rely on testimony. Many mathematicians require that a number of experts testify that they have checked the proof of a result p before they will rely on p in their own proofs without checking the proof of p. We examine why this is. We argue that for each expert who testifies that she has checked the proof of p and found no errors, the likelihood that the proof contains no (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Using corpus linguistics to investigate mathematical explanation.Juan Pablo Mejía Ramos, Lara Alcock, Kristen Lew, Paolo Rago, Chris Sangwin & Matthew Inglis - 2019 - In Eugen Fischer & Mark Curtis (eds.), Methodological Advances in Experimental Philosophy. London: Bloomsbury Press. pp. 239–263.
    In this chapter we use methods of corpus linguistics to investigate the ways in which mathematicians describe their work as explanatory in their research papers. We analyse use of the words explain/explanation (and various related words and expressions) in a large corpus of texts containing research papers in mathematics and in physical sciences, comparing this with their use in corpora of general, day-to-day English. We find that although mathematicians do use this family of words, such use is considerably less prevalent (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  49.  68
    What inductive explanations could not be.John Dougherty - 2018 - Synthese 195 (12):5473-5483.
    Marc Lange argues that proofs by mathematical induction are generally not explanatory because inductive explanation is irreparably circular. He supports this circularity claim by presenting two putative inductive explanantia that are one another’s explananda. On pain of circularity, at most one of this pair may be a true explanation. But because there are no relevant differences between the two explanantia on offer, neither has the explanatory high ground. Thus, neither is an explanation. I argue that there is no important (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  50.  82
    Motivated proofs: What they are, why they matter and how to write them.Rebecca Lea Morris - 2020 - Review of Symbolic Logic 13 (1):23-46.
    Mathematicians judge proofs to possess, or lack, a variety of different qualities, including, for example, explanatory power, depth, purity, beauty and fit. Philosophers of mathematical practice have begun to investigate the nature of such qualities. However, mathematicians frequently draw attention to another desirable proof quality: being motivated. Intuitively, motivated proofs contain no "puzzling" steps, but they have received little further analysis. In this paper, I begin a philosophical investigation into motivated proofs. I suggest that a proof is motivated (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
1 — 50 / 972