Abstract
The term functional domain is often used to describe the region containing the cis acting sequences that regulate a gene locus. “Strong” domain models propose that the domain is a spatially isolated entity consisting of a region of extended accessible chromatin bordered by insulators that have evolved to act as functional boundaries. However, the observation that independently regulated loci can overlap partially or completely raises questions about functional requirements for physically isolated domain structures. An alternative model, the “weak” domain model, proposes that domain structure is determined by the distribution of binding sites for positively acting factors, without a requirement for functional boundaries. The domain would effectively be the region that contains these factor-binding sites. Specificity of promoter-enhancer interactions would play a major role in maintaining the functional autonomy of adjacent genes. Sequences that interfere with these interactions (frequently characterised as insulators) would be selected against if they occurred within the domain but not at the edges, or in the interdomain regions. As a result, insulators would often be found near the borders of domains without necessarily being selected to act as boundaries. BioEssays 22:657–665, 2000. © 2000 John Wiley & Sons, Inc.