Results for 'Solomon Feferman and Vladimir Lifschitz'

957 found
Order:
  1.  16
    In memoriam: Grigori E. Mints 1939-2014.Solomon Feferman and Vladimir Lifschitz - 2015 - Bulletin of Symbolic Logic 21 (1):31-33,.
    Direct download  
     
    Export citation  
     
    Bookmark  
  2.  52
    In memoriam: Grigori E. Mints 1939–2014.Solomon Feferman & Vladimir Lifschitz - 2015 - Bulletin of Symbolic Logic 21 (1):31-33.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3.  80
    Operational set theory and small large cardinals.Solomon Feferman with with R. L. Vaught - manuscript
    “Small” large cardinal notions in the language of ZFC are those large cardinal notions that are consistent with V = L. Besides their original formulation in classical set theory, we have a variety of analogue notions in systems of admissible set theory, admissible recursion theory, constructive set theory, constructive type theory, explicit mathematics and recursive ordinal notations (as used in proof theory). On the face of it, it is surprising that such distinctively set-theoretical notions have analogues in such disaparate and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  42
    Turing's thesis.Solomon Feferman with with R. L. Vaught - manuscript
    In the sole extended break from his life and varing in this way we can associate a sysied career in England, Alan Turing spent the tem of logic with any constructive ordinal. It may be asked whether such a years 1936–1938 doing graduate work at..
    Direct download  
     
    Export citation  
     
    Bookmark  
  5. (1 other version)Alfred Tarski, Life and Logic.Anita Burdman Feferman & Solomon Feferman - 2005 - Bulletin of Symbolic Logic 11 (4):535-540.
     
    Export citation  
     
    Bookmark   30 citations  
  6.  25
    Alfred Tarski: Life and Logic.Anita Burdman Feferman & Solomon Feferman - 2004 - Cambridge, England: Cambridge University Press.
  7.  76
    In the Light of Logic.Solomon Feferman - 1998 - New York and Oxford: Oxford University Press.
    In this collection of essays written over a period of twenty years, Solomon Feferman explains advanced results in modern logic and employs them to cast light on significant problems in the foundations of mathematics. Most troubling among these is the revolutionary way in which Georg Cantor elaborated the nature of the infinite, and in doing so helped transform the face of twentieth-century mathematics. Feferman details the development of Cantorian concepts and the foundational difficulties they engendered. He argues (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   48 citations  
  8.  18
    Closed-world databases and circumscription.Vladimir Lifschitz - 1985 - Artificial Intelligence 27 (2):229-235.
  9.  97
    Typical ambiguity: Trying to have your cake and eat it too.Solomon Feferman - manuscript
    Ambiguity is a property of syntactic expressions which is ubiquitous in all informal languages–natural, scientific and mathematical; the efficient use of language depends to an exceptional extent on this feature. Disambiguation is the process of separating out the possible meanings of ambiguous expressions. Ambiguity is typical if the process of disambiguation can be carried out in some systematic way. Russell made use of typical ambiguity in the theory of types in order to combine the assurance of its (apparent) consistency (“having (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  10.  92
    Relationships between constructive, predicative and classical systems of analysis.Solomon Feferman - unknown
    Both the constructive and predicative approaches to mathematics arose during the period of what was felt to be a foundational crisis in the early part of this century. Each critiqued an essential logical aspect of classical mathematics, namely concerning the unrestricted use of the law of excluded middle on the one hand, and of apparently circular \impredicative" de nitions on the other. But the positive redevelopment of mathematics along constructive, resp. predicative grounds did not emerge as really viable alternatives to (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  11.  53
    Systems of explicit mathematics with non-constructive μ-operator. Part I.Solomon Feferman & Gerhard Jäger - 1993 - Annals of Pure and Applied Logic 65 (3):243-263.
    Feferman, S. and G. Jäger, Systems of explicit mathematics with non-constructive μ-operator. Part I, Annals of Pure and Applied Logic 65 243-263. This paper is mainly concerned with the proof-theoretic analysis of systems of explicit mathematics with a non-constructive minimum operator. We start off from a basic theory BON of operators and numbers and add some principles of set and formula induction on the natural numbers as well as axioms for μ. The principal results then state: BON plus set (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  12. Kurt Gödel: Conviction and Caution.Solomon Feferman - 1984 - Philosophia Naturalis 21 (2/4):546-562.
  13. Logic, Logics, and Logicism.Solomon Feferman - 1999 - Notre Dame Journal of Formal Logic 40 (1):31-54.
    The paper starts with an examination and critique of Tarski’s wellknown proposed explication of the notion of logical operation in the type structure over a given domain of individuals as one which is invariant with respect to arbitrary permutations of the domain. The class of such operations has been characterized by McGee as exactly those definable in the language L∞,∞. Also characterized similarly is a natural generalization of Tarski’s thesis, due to Sher, in terms of bijections between domains. My main (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   66 citations  
  14. Hilbert's program relativized: Proof-theoretical and foundational reductions.Solomon Feferman - 1988 - Journal of Symbolic Logic 53 (2):364-384.
  15. Does mathematics need new axioms.Solomon Feferman, Harvey M. Friedman, Penelope Maddy & John R. Steel - 1999 - Bulletin of Symbolic Logic 6 (4):401-446.
    Part of the ambiguity lies in the various points of view from which this question might be considered. The crudest di erence lies between the point of view of the working mathematician and that of the logician concerned with the foundations of mathematics. Now some of my fellow mathematical logicians might protest this distinction, since they consider themselves to be just more of those \working mathematicians". Certainly, modern logic has established itself as a very respectable branch of mathematics, and there (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   79 citations  
  16.  62
    Finitary inductively presented logics.Solomon Feferman - manuscript
    A notion of finitary inductively presented (f.i.p.) logic is proposed here, which includes all syntactically described logics (formal systems)met in practice. A f.i.p. theory FS0 is set up which is universal for all f.i.p. logics; though formulated as a theory of functions and classes of expressions, FS0 is a conservative extension of PRA. The aims of this work are (i)conceptual, (ii)pedagogical and (iii)practical. The system FS0 serves under (i)and (ii)as a theoretical framework for the formalization of metamathematics. The general approach (...)
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  17. Set-theoretical Invariance Criteria for Logicality.Solomon Feferman - 2010 - Notre Dame Journal of Formal Logic 51 (1):3-20.
    This is a survey of work on set-theoretical invariance criteria for logicality. It begins with a review of the Tarski-Sher thesis in terms, first, of permutation invariance over a given domain and then of isomorphism invariance across domains, both characterized by McGee in terms of definability in the language L∞,∞. It continues with a review of critiques of the Tarski-Sher thesis, and a proposal in response to one of those critiques via homomorphism invariance. That has quite divergent characterization results depending (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  18.  96
    Godel's program for new axioms: Why, where, how and what?Solomon Feferman - unknown
    From 1931 until late in his life (at least 1970) Godel called for the pursuit of new axioms for mathematics to settle both undecided number-theoretical propositions (of the form obtained in his incompleteness results) and undecided set-theoretical propositions (in particular CH). As to the nature of these, Godel made a variety of suggestions, but most frequently he emphasized the route of introducing ever higher axioms of in nity. In particular, he speculated (in his 1946 Princeton remarks) that there might be (...)
    Direct download  
     
    Export citation  
     
    Bookmark   15 citations  
  19. Axioms for determinateness and truth.Solomon Feferman - 2008 - Review of Symbolic Logic 1 (2):204-217.
    elaboration of the last part of my Tarski Lecture, “Truth unbound”, UC Berkeley, 3 April 2006, and of the lecture, “A nicer formal theory of non-hierarchical truth”, Workshop on Mathematical Methods in Philosophy, Banff , 18-23 Feb. 2007.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  20.  41
    Three conceptual problems that bug me (7th Scandinavian Logic Symposium, Uppsala lecture, Aug.18-20, 1996 Draft).Solomon Feferman - unknown
    I will talk here about three problems that have bothered me for a number of years, during which time I have experimented with a variety of solutions and encouraged others to work on them. I have raised each of them separately both in full and in passing in various contexts, but thought it would be worthwhile on this occasion to bring them to your attention side by side. In this talk I will explain the problems, together with some things that (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  21. And so on... : reasoning with infinite diagrams.Solomon Feferman - 2012 - Synthese 186 (1):371-386.
    This paper presents examples of infinite diagrams whose use is more or less essential for understanding and accepting various proofs in higher mathematics. The significance of these is discussed with respect to the thesis that every proof can be formalized, and a “pre” form of this thesis that every proof can be presented in everyday statements-only form.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  22.  20
    Answer set programming and plan generation.Vladimir Lifschitz - 2002 - Artificial Intelligence 138 (1-2):39-54.
  23.  21
    Selected papers published before 1996.Vladimir Lifschitz - manuscript
    (Click here for the papers published between 1996 and 2000, and here for more recent papers.) V. Lifschitz, On the semantics of STRIPS ," in: Reasoning about Actions and Plans , 1987, pp. 1-9. M. Gelfond and V. Lifschitz, The stable model semantics for logic programming ," in Logic Programming: Proceedings of the Fifth International Conference and Symposium , 1988, pp. 1070-1080.
    Direct download  
     
    Export citation  
     
    Bookmark  
  24. Logic Programming and Nonmonotonic Reasoning, Lecture Notes in Artificial Intelligence 2923 (7th International Conference, LPNMR 2004, Fort Lauderdale, FL, January 6-8, 2004 Proceedings).Vladimir Lifschitz & Ilkka Niemela (eds.) - 2003 - Berlin, Heidelberg: Springer.
    No categories
     
    Export citation  
     
    Bookmark  
  25.  69
    Kreisel's 'Unwinding Program'.Solomon Feferman - 1996 - In Piergiorgio Odifreddi (ed.), Kreiseliana: About and Around Georg Kreisel. A K Peters. pp. 247--273.
  26.  59
    Systems of explicit mathematics with non-constructive μ-operator. Part II.Solomon Feferman & Gerhard Jäger - 1996 - Annals of Pure and Applied Logic 79 (1):37-52.
    This paper is mainly concerned with proof-theoretic analysis of some second-order systems of explicit mathematics with a non-constructive minimum operator. By introducing axioms for variable types we extend our first-order theory BON to the elementary explicit type theory EET and add several forms of induction as well as axioms for μ. The principal results then state: EET plus set induction is proof-theoretically equivalent to Peano arithmetic PA <0).
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  27. Why a Little Bit Goes a Long Way: Logical Foundations of Scientifically Applicable Mathematics.Solomon Feferman - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:442 - 455.
    Does science justify any part of mathematics and, if so, what part? These questions are related to the so-called indispensability arguments propounded, among others, by Quine and Putnam; moreover, both were led to accept significant portions of set theory on that basis. However, set theory rests on a strong form of Platonic realism which has been variously criticized as a foundation of mathematics and is at odds with scientific realism. Recent logical results show that it is possible to directly formalize (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  28. Foundations of Unlimited Category Theory: What Remains to Be Done.Solomon Feferman - 2013 - Review of Symbolic Logic 6 (1):6-15.
    Following a discussion of various forms of set-theoretical foundations of category theory and the controversial question of whether category theory does or can provide an autonomous foundation of mathematics, this article concentrates on the question whether there is a foundation for “unlimited” or “naive” category theory. The author proposed four criteria for such some years ago. The article describes how much had previously been accomplished on one approach to meeting those criteria, then takes care of one important obstacle that had (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  29.  25
    Minimal belief and negation as failure.Vladimir Lifschitz - 1994 - Artificial Intelligence 70 (1-2):53-72.
  30. Foundations of Category Theory: What Remains to Be Done.Solomon Feferman - unknown
    • Session on CF&FCT proposed by E. Landry; participants: G. Hellman, E. Landry, J.-P. Marquis and C. McLarty..
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  31.  15
    (1 other version)The Proof Theory of Classical and Constructive Inductive Definitions. A Forty Year Saga, 1968 – 2008.Solomon Feferman - 2010 - In Ralf Schindler (ed.), Ways of Proof Theory. De Gruyter. pp. 7-30.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  79
    (1 other version)Axiomatizing Truth: How and Why.Solomon Feferman - unknown
    2. Various philosophical and semantical theories are candidates for axiomatization (but not all, e.g. coherence, pragmatic, fuzzy theories). NB: axiomatizations are not uniquely determined.
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  33. Gödel, Nagel, Minds, and Machines.Solomon Feferman - 2009 - Journal of Philosophy 106 (4):201-219.
    Ernest Nagel Lecture, Columbia University, Sept. 27, 2007.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  34.  94
    The development of programs for the foundations of mathematics in the first third of the 20th century.Solomon Feferman - manuscript
    The most prominent “schools” or programs for the foundations of mathematics that took shape in the first third of the 20th century emerged directly from, or in response to, developments in mathematics and logic in the latter part of the 19th century. The first of these programs, so-called logicism, had as its aim the reduction of mathematics to purely logical principles. In order to understand properly its achievements and resulting problems, it is necessary to review the background from that previous (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  35.  54
    The unfolding of non-finitist arithmetic.Solomon Feferman & Thomas Strahm - 2000 - Annals of Pure and Applied Logic 104 (1-3):75-96.
    The unfolding of schematic formal systems is a novel concept which was initiated in Feferman , Gödel ’96, Lecture Notes in Logic, Springer, Berlin, 1996, pp. 3–22). This paper is mainly concerned with the proof-theoretic analysis of various unfolding systems for non-finitist arithmetic . In particular, we examine two restricted unfoldings and , as well as a full unfolding, . The principal results then state: is equivalent to ; is equivalent to ; is equivalent to . Thus is proof-theoretically (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  36.  21
    Model-Theoretic Logics.Jon Barwise & Solomon Feferman - 2017 - Cambridge University Press.
    This book brings together several directions of work in model theory between the late 1950s and early 1980s.
    Direct download  
     
    Export citation  
     
    Bookmark   65 citations  
  37.  26
    Papers published between 1996 and 2000.Vladimir Lifschitz - manuscript
    (Click here for selected papers published before 1996, and here for papers published after 2000.) V. Lifschitz, Foundations of logic programming ," in Principles of Knowledge Representation , CSLI Publications, 1996, pp. 69-127. E. Giunchiglia, N. Kartha and V. Lifschitz, Representing action: indeterminacy and ramifications ," Artificial Intelligence , Vol. 95, 1997, pp. 409-443. V. Lifschitz, On the logic of causal explanation ," Artificial Intelligence , Vol. 96, 1997, pp. 451-465. V. Lifschitz, Two components of an (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  38.  37
    A Language and Axioms for Explicit Mathematics.Solomon Feferman, J. N. Crossley, Maurice Boffa, Dirk van Dalen & Kenneth Mcaloon - 1984 - Journal of Symbolic Logic 49 (1):308-311.
  39.  67
    The impact of the incompleteness theorems on mathematics.Solomon Feferman - manuscript
    In addition to this being the centenary of Kurt Gödel’s birth, January marked 75 years since the publication (1931) of his stunning incompleteness theorems. Though widely known in one form or another by practicing mathematicians, and generally thought to say something fundamental about the limits and potentialities of mathematical knowledge, the actual importance of these results for mathematics is little understood. Nor is this an isolated example among famous results. For example, not long ago, Philip Davis wrote me about what (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Unfolding finitist arithmetic.Solomon Feferman & Thomas Strahm - 2010 - Review of Symbolic Logic 3 (4):665-689.
    The concept of the (full) unfolding of a schematic system is used to answer the following question: Which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted ? The program to determine for various systems of foundational significance was previously carried out for a system of nonfinitist arithmetic, ; it was shown that is proof-theoretically equivalent to predicative analysis. In the present paper we work out the unfolding notions for a basic schematic system (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  41. The nature and significance of gödel's incompleteness theorems.Solomon Feferman - manuscript
    What Gödel accomplished in the decade of the 1930s before joining the Institute changed the face of mathematical logic and continues to influence its development. As you gather from my title, I’ll be talking about the most famous of his results in that period, but first I want to indulge in some personal reminiscences. In many ways this is a sentimental journey for me. I was a member of the Institute in 1959-60, a couple of years after receiving my PhD (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Gödel's incompleteness theorems, free will and mathematical thought.Solomon Feferman - 2011 - In Richard Swinburne (ed.), Free Will and Modern Science. New York: OUP/British Academy.
    The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological, and logical character. This chapter focuses on two arguments from logic. First, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to which every proposition is either true or false, no matter whether the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  43. (1 other version)Predicativity.Solomon Feferman - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 590-624.
    What is predicativity? While the term suggests that there is a single idea involved, what the history will show is that there are a number of ideas of predicativity which may lead to different logical analyses, and I shall uncover these only gradually. A central question will then be what, if anything, unifies them. Though early discussions are often muddy on the concepts and their employment, in a number of important respects they set the stage for the further developments, and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  44.  24
    Mathematical Foundations of Answer Set Programming.Vladimir Lifschitz - unknown
    applied, for instance, to developing a decision support system for the Space Shuttle INogueira et al., 2001] and to graph-theoretic problems arising in..
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  25
    Ah, Chu!Solomon Feferman - unknown
    A theorem obtained by van Benthem for preservation of formulas under Chu transforms between Chu spaces is strengthened and derived from a general many-sorted interpolation theorem. The latter has been established both by proof-theoretic and model-theoretic methods; there is some discussion as to how these methods compare and what languages they apply to. In the conclusion, several further questions are raised.
    Direct download  
     
    Export citation  
     
    Bookmark  
  46.  33
    A reductive semantics for counting and choice in answer set programming.Vladimir Lifschitz - unknown
    In a recent paper, Ferraris, Lee and Lifschitz conjectured that the concept of a stable model of a first-order formula can be used to treat some answer set programming expressions as abbreviations. We follow up on that suggestion and introduce an answer set programming language that defines the mean- ing of counting and choice by reducing these constructs to first-order formulas. For the new language, the concept of a safe program is defined, and its semantic role is investigated. We (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  47.  24
    Stable models and circumscription.Paolo Ferraris, Joohyung Lee & Vladimir Lifschitz - 2011 - Artificial Intelligence 175 (1):236-263.
  48.  67
    For philosophy of mathematics: 5 questions.Solomon Feferman - 2007 - In V. F. Hendricks & Hannes Leitgeb (eds.), Philosophy of Mathematics: Five Questions. Automatic Press/VIP.
    When I was a teenager growing up in Los Angeles in the early 1940s, my dream was to become a mathematical physicist: I was fascinated by the ideas of relativity theory and quantum mechanics, and I read popular expositions which, in those days, besides Einstein’s The Meaning of Relativity, was limited to books by the likes of Arthur S. Eddington and James Jeans. I breezed through the high-school mathematics courses (calculus was not then on offer, and my teachers barely understood (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  49.  28
    Temporal Phylogenetic Networks and Logic Programming.Vladimir Lifschitz - unknown
    The concept of a temporal phylogenetic network is a mathematical model of evolution of a family of natural languages. It takes into account the fact that languages can trade their characteristics with each other when linguistic communities are in contact, and also that a contact is only possible when the languages are spoken at the same time. We show how computational methods of answer set programming and constraint logic programming can be used to generate plausible conjectures about contacts between prehistoric (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  50.  65
    Knowledge representation and classical logic.Vladimir Lifschitz, L. Morgenstern & D. Plaisted - manuscript
    in Handbook of Knowledge representation, Elsevier, 2008.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 957