Results for ' enumeration degrees'

958 found
Order:
  1.  50
    Noncappable enumeration degrees below 0'e. [REVIEW]S. Cooper & Andrea Sorbi - 1996 - Journal of Symbolic Logic 61 (4):1347 - 1363.
    We prove that there exists a noncappable enumeration degree strictly below 0' e.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  27
    A Hierarchy of Computably Enumerable Degrees.Rod Downey & Noam Greenberg - 2018 - Bulletin of Symbolic Logic 24 (1):53-89.
    We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of${\rm{\Delta }}_2^0$functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jockusch, and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable antichain.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  23
    Bounding Nonsplitting Enumeration Degrees.Thomas F. Kent & Andrea Sorbi - 2007 - Journal of Symbolic Logic 72 (4):1405 - 1417.
    We show that every nonzero $\Sigma _{2}^{0}$ enumeration degree bounds a nonsplitting nonzero enumeration degree.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  4.  24
    Recursively Enumerable Degrees and the Degrees Less Than 0.C. E. M. Yates & John N. Crossley - 1970 - Journal of Symbolic Logic 35 (4):589-589.
  5.  34
    Initial segments of the enumeration degrees.Hristo Ganchev & Andrea Sorbi - 2016 - Journal of Symbolic Logic 81 (1):316-325.
    Using properties of${\cal K}$-pairs of sets, we show that every nonzero enumeration degreeabounds a nontrivial initial segment of enumeration degrees whose nonzero elements have all the same jump asa. Some consequences of this fact are derived, that hold in the local structure of the enumeration degrees, including: There is an initial segment of enumeration degrees, whose nonzero elements are all high; there is a nonsplitting high enumeration degree; every noncappable enumeration degree (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  6.  38
    On the Symmetric Enumeration Degrees.Charles M. Harris - 2007 - Notre Dame Journal of Formal Logic 48 (2):175-204.
    A set A is symmetric enumeration (se-) reducible to a set B (A ≤\sb se B) if A is enumeration reducible to B and \barA is enumeration reducible to \barB. This reducibility gives rise to a degree structure (D\sb se) whose least element is the class of computable sets. We give a classification of ≤\sb se in terms of other standard reducibilities and we show that the natural embedding of the Turing degrees (D\sb T) into the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  7.  54
    Definability in the enumeration degrees.Theodore A. Slaman & W. Hugh Woodin - 1997 - Archive for Mathematical Logic 36 (4-5):255-267.
    We prove that every countable relation on the enumeration degrees, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}, is uniformly definable from parameters in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}. Consequently, the first order theory of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document} is recursively isomorphic to the second order theory of arithmetic. By an effective version of coding lemma, we show that the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  8. Definability in the recursively enumerable degrees.André Nies, Richard A. Shore & Theodore A. Slaman - 1996 - Bulletin of Symbolic Logic 2 (4):392-404.
    §1. Introduction. Natural sets that can be enumerated by a computable function always seem to be either actually computable or of the same complexity as the Halting Problem, the complete r.e. set K. The obvious question, first posed in Post [1944] and since then called Post's Problem is then just whether there are r.e. sets which are neither computable nor complete, i.e., neither recursive nor of the same Turing degree as K?Let be the r.e. degrees, i.e., the r.e. sets (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  9.  36
    The Π20 enumeration degrees are not dense.William Calhoun & Theodore Slaman - 1996 - Journal of Symbolic Logic 61 (4):1364-1379.
    We show that the Π 0 2 enumeration degrees are not dense. This answers a question posed by Cooper.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  10. Totally ω-computably enumerable degrees and bounding critical triples.Rod Downey, Noam Greenberg & Rebecca Weber - 2007 - Journal of Mathematical Logic 7 (2):145-171.
    We characterize the class of c.e. degrees that bound a critical triple as those degrees that compute a function that has no ω-c.e. approximation.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  11.  56
    A note on the enumeration degrees of 1-generic sets.Liliana Badillo, Caterina Bianchini, Hristo Ganchev, Thomas F. Kent & Andrea Sorbi - 2016 - Archive for Mathematical Logic 55 (3):405-414.
    We show that every nonzero $${\Delta^{0}_{2}}$$ enumeration degree bounds the enumeration degree of a 1-generic set. We also point out that the enumeration degrees of 1-generic sets, below the first jump, are not downwards closed, thus answering a question of Cooper.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  70
    Badness and jump inversion in the enumeration degrees.Charles M. Harris - 2012 - Archive for Mathematical Logic 51 (3-4):373-406.
    This paper continues the investigation into the relationship between good approximations and jump inversion initiated by Griffith. Firstly it is shown that there is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^{0}_{2}}$$\end{document} set A whose enumeration degree a is bad—i.e. such that no set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \in a}$$\end{document} is good approximable—and whose complement \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{A}}$$\end{document} has lowest possible jump, in other (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13.  90
    Sublattices of the Recursively Enumerable Degrees.S. K. Thomason - 1971 - Mathematical Logic Quarterly 17 (1):273-280.
  14. Structural properties and Σ20 enumeration degrees.André Nies & Andrea Sorbi - 2000 - Journal of Symbolic Logic 65 (1):285-292.
    We prove that each Σ 0 2 set which is hypersimple relative to $\emptyset$ ' is noncuppable in the structure of the Σ 0 2 enumeration degrees. This gives a connection between properties of Σ 0 2 sets under inclusion and and the Σ 0 2 enumeration degrees. We also prove that some low non-computably enumerable enumeration degree contains no set which is simple relative to $\emptyset$ '.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  36
    The limitations of cupping in the local structure of the enumeration degrees.Mariya I. Soskova - 2010 - Archive for Mathematical Logic 49 (2):169-193.
    We prove that a sequence of sets containing representatives of cupping partners for every nonzero ${\Delta^0_2}$ enumeration degree cannot have a ${\Delta^0_2}$ enumeration. We also prove that no subclass of the ${\Sigma^0_2}$ enumeration degrees containing the nonzero 3-c.e. enumeration degrees can be cupped to ${\mathbf{0}_e'}$ by a single incomplete ${\Sigma^0_2}$ enumeration degree.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  16.  18
    Splittings of 0' into the Recursively Enumerable Degrees.Xiaoding Yi - 1996 - Mathematical Logic Quarterly 42 (1):249-269.
    Lachlan [9] proved that there exists a non-recursive recursively enumerable degree such that every non-recursive r. e. degree below it bounds a minimal pair. In this paper we first prove the dual of this fact. Second, we answer a question of Jockusch by showing that there exists a pair of incomplete r. e. degrees a0, a1 such that for every non-recursive r. e. degree w, there is a pair of incomparable r. e. degrees b0, b2 such that w (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  17. On minimal pairs of enumeration degrees.Kevin McEvoy & S. Barry Cooper - 1985 - Journal of Symbolic Logic 50 (4):983-1001.
  18.  40
    Prime models of computably enumerable degree.Rachel Epstein - 2008 - Journal of Symbolic Logic 73 (4):1373-1388.
    We examine the computably enumerable (c.e.) degrees of prime models of complete atomic decidable (CAD) theories. A structure has degree d if d is the degree of its elementary diagram. We show that if a CAD theory T has a prime model of c.e. degree c, then T has a prime model of strictly lower c.e. degree b, where, in addition, b is low (b' = 0'). This extends Csima's result that every CAD theory has a low prime model. (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  65
    Bounding computably enumerable degrees in the Ershov hierarchy.Angsheng Li, Guohua Wu & Yue Yang - 2006 - Annals of Pure and Applied Logic 141 (1):79-88.
    Lachlan observed that any nonzero d.c.e. degree bounds a nonzero c.e. degree. In this paper, we study the c.e. predecessors of d.c.e. degrees, and prove that given a nonzero d.c.e. degree , there is a c.e. degree below and a high d.c.e. degree such that bounds all the c.e. degrees below . This result gives a unified approach to some seemingly unrelated results. In particular, it has the following two known theorems as corollaries: there is a low c.e. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  20.  41
    Properly [image] Enumeration Degrees and the High/Low Hierarchy.Matthew Giorgi, Andrea Sorbi & Yue Yang - 2006 - Journal of Symbolic Logic 71 (4):1125 - 1144.
    We show that there exist downwards properly $\Sigma _{2}^{0}$ (in fact noncuppable) e-degrees that are not high. We also show that every high e-degree bounds a noncuppable e-degree.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  21.  45
    1-genericity in the enumeration degrees.Kate Copestake - 1988 - Journal of Symbolic Logic 53 (3):878-887.
  22.  16
    (1 other version)A structural dichotomy in the enumeration degrees.Hristo A. Ganchev, Iskander Sh Kalimullin, Joseph S. Miller & Mariya I. Soskova - 2020 - Journal of Symbolic Logic:1-18.
    We give several new characterizations of the continuous enumeration degrees. The main one proves that an enumeration degree is continuous if and only if it is not half a nontrivial relativized K-pair. This leads to a structural dichotomy in the enumeration degrees.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  46
    Then-rea enumeration degrees are dense.Alistair H. Lachlan & Richard A. Shore - 1992 - Archive for Mathematical Logic 31 (4):277-285.
  24.  22
    The jump operator on the ω-enumeration degrees.Hristo Ganchev & Ivan N. Soskov - 2009 - Annals of Pure and Applied Logic 160 (3):289-301.
    The jump operator on the ω-enumeration degrees was introduced in [I.N. Soskov, The ω-enumeration degrees, J. Logic Computat. 17 1193–1214]. In the present paper we prove a jump inversion theorem which allows us to show that the enumeration degrees are first order definable in the structure of the ω-enumeration degrees augmented by the jump operator. Further on we show that the groups of the automorphisms of and of the enumeration degrees (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  25.  21
    The recursively enumerable degrees have infinitely many one-types.Klaus Ambos-Spies & Robert I. Soare - 1989 - Annals of Pure and Applied Logic 44 (1-2):1-23.
  26.  21
    (1 other version)Properly Σ2 Enumeration Degrees.S. B. Cooper & C. S. Copestake - 1988 - Mathematical Logic Quarterly 34 (6):491-522.
  27.  32
    Cappable recursively enumerable degrees and Post's program.Klaus Ambos-Spies & André Nies - 1992 - Archive for Mathematical Logic 32 (1):51-56.
    We give a simple structural property which characterizes the r.e. sets whose (Turing) degrees are cappable. Since cappable degrees are incomplete, this may be viewed as a solution of Post's program, which asks for a simple structural property of nonrecursive r.e. sets which ensures incompleteness.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  28.  23
    Limit lemmas and jump inversion in the enumeration degrees.Evan J. Griffiths - 2003 - Archive for Mathematical Logic 42 (6):553-562.
    We show that there is a limit lemma for enumeration reducibility to 0 e ', analogous to the Shoenfield Limit Lemma in the Turing degrees, which relativises for total enumeration degrees. Using this and `good approximations' we prove a jump inversion result: for any set W with a good approximation and any set X< e W such that W≤ e X' there is a set A such that X≤ e A< e W and A'=W'. (All jumps (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  29.  40
    Collins Donald J.. Recursively enumerable degrees and the conjugacy problem. Acta mathematica, vol. 122 , pp. 115–160.C. R. J. Clapham - 1971 - Journal of Symbolic Logic 36 (3):540.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  30. On extensions of embeddings into the enumeration degrees of the -sets.Steffen Lempp, Theodore A. Slaman & Andrea Sorbi - 2005 - Journal of Mathematical Logic 5 (02):247-298.
    We give an algorithm for deciding whether an embedding of a finite partial order [Formula: see text] into the enumeration degrees of the [Formula: see text]-sets can always be extended to an embedding of a finite partial order [Formula: see text].
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  31.  19
    The density of infima in the recursively enumerable degrees.Theodore A. Slaman - 1991 - Annals of Pure and Applied Logic 52 (1-2):155-179.
    We show that every nontrivial interval in the recursively enumerable degrees contains an incomparable pair which have an infimum in the recursively enumerable degrees.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  32.  26
    A necessary and sufficient condition for embedding ranked finite partial lattices into the computably enumerable degrees.M. Lerman - 1998 - Annals of Pure and Applied Logic 94 (1-3):143-180.
    We define a class of finite partial lattices which admit a notion of rank compatible with embedding constructions, and present a necessary and sufficient condition for the embeddability of a finite ranked partial lattice into the computably enumerable degrees.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  33.  32
    Density of the cototal enumeration degrees.Joseph S. Miller & Mariya I. Soskova - 2018 - Annals of Pure and Applied Logic 169 (5):450-462.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  34.  38
    The Π₃-Theory of the [image] -Enumeration Degrees Is Undecidable.Thomas F. Kent - 2006 - Journal of Symbolic Logic 71 (4):1284 - 1302.
    We show that in the language of {≤}, the Π₃-fragment of the first order theory of the $\Sigma _{2}^{0}$-enumeration degrees is undecidable. We then extend this result to show that the Π₃-theory of any substructure of the enumeration degrees which contains the $\Delta _{2}^{0}$-degrees is undecidable.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  35. Jumps of quasi-minimal enumeration degrees.Kevin McEvoy - 1985 - Journal of Symbolic Logic 50 (3):839-848.
  36.  40
    Undecidability and 1-types in the recursively enumerable degrees.Klaus Ambos-Spies & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 63 (1):3-37.
    Ambos-Spies, K. and R.A. Shore, Undecidability and 1-types in the recursively enumerable degrees, Annals of Pure and Applied Logic 63 3–37. We show that the theory of the partial ordering of recursively enumerable Turing degrees is undecidable and has uncountably many 1-types. In contrast to the original proof of the former which used a very complicated O''' argument our proof proceeds by a much simpler infinite injury argument. Moreover, it combines with the permitting technique to get similar results (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  37.  31
    C-Quasi-Minimal enumeration degrees below c'.Boris Solon - 2006 - Archive for Mathematical Logic 45 (4):505-517.
    This paper is dedicated to the study of properties of the operations ∪ and ∩ in the upper semilattice of the e-degrees as well as in the interval (c,c') e for any e-degree c.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  38.  20
    (1 other version)The computably enumerable degrees are locally non-cappable.Matthew B. Giorgi - 2003 - Archive for Mathematical Logic -1 (1):1-1.
  39.  27
    Interpreting true arithmetic in the local structure of the enumeration degrees.Hristo Ganchev & Mariya Soskova - 2012 - Journal of Symbolic Logic 77 (4):1184-1194.
    We show that the theory of the local structure of the enumeration degrees is computably isomorphic to the theory of first order arithmetic. We introduce a novel coding method, using the notion of a K-pair, to code a large class of countable relations.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  40.  19
    1-Generic splittings of computably enumerable degrees.Guohua Wu - 2006 - Annals of Pure and Applied Logic 138 (1):211-219.
    Say a set Gω is 1-generic if for any eω, there is a string σG such that {e}σ↓ or τσ↑). It is known that can be split into two 1-generic degrees. In this paper, we generalize this and prove that any nonzero computably enumerable degree can be split into two 1-generic degrees. As a corollary, no two computably enumerable degrees bound the same class of 1-generic degrees.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  41.  37
    Undecidability and 1-types in intervals of the computably enumerable degrees.Klaus Ambos-Spies, Denis R. Hirschfeldt & Richard A. Shore - 2000 - Annals of Pure and Applied Logic 106 (1-3):1-47.
    We show that the theory of the partial ordering of the computably enumerable degrees in any given nontrivial interval is undecidable and has uncountably many 1-types.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  15
    Strong Minimal Covers for Recursively Enumerable Degrees.S. Barry Cooper - 1996 - Mathematical Logic Quarterly 42 (1):191-196.
    We prove that there exists a nonzero recursively enumerable Turing degree possessing a strong minimal cover.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  29
    Cupping and definability in the local structure of the enumeration degrees.Hristo Ganchev & Mariya I. Soskova - 2012 - Journal of Symbolic Logic 77 (1):133-158.
    We show that every splitting of ${0}_{\mathrm{e}}^{\prime }$ in the local structure of the enumeration degrees, $$\mathcal{G}_{e} , contains at least one low-cuppable member. We apply this new structural property to show that the classes of all $\mathcal{K}$ -pairs in $\mathcal{G}_{e}$ , all downwards properly ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degrees and all upwards properly ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degrees are first order definable in $\mathcal{G}_{e}$.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Embedding finite lattices into the Σ20 enumeration degrees.Steffen Lempp & Andrea Sorbi - 2002 - Journal of Symbolic Logic 67 (1):69-90.
    We show that every finite lattice is embeddable into the Σ 0 2 enumeration degrees via a lattice-theoretic embedding which preserves 0 and 1.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  60
    Bounding minimal degrees by computably enumerable degrees.Angsheng Li & Dongping Yang - 1998 - Journal of Symbolic Logic 63 (4):1319-1347.
    In this paper, we prove that there exist computably enumerable degrees a and b such that $\mathbf{a} > \mathbf{b}$ and for any degree x, if x ≤ a and x is a minimal degree, then $\mathbf{x}.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  46.  29
    On the Jumps of the Degrees Below a Recursively Enumerable Degree.David R. Belanger & Richard A. Shore - 2018 - Notre Dame Journal of Formal Logic 59 (1):91-107.
    We consider the set of jumps below a Turing degree, given by JB={x':x≤a}, with a focus on the problem: Which recursively enumerable degrees a are uniquely determined by JB? Initially, this is motivated as a strategy to solve the rigidity problem for the partial order R of r.e. degrees. Namely, we show that if every high2 r.e. degree a is determined by JB, then R cannot have a nontrivial automorphism. We then defeat the strategy—at least in the form (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  47.  48
    The theory of the metarecursively enumerable degrees.Noam Greenberg, Richard A. Shore & Theodore A. Slaman - 2006 - Journal of Mathematical Logic 6 (1):49-68.
    Sacks [23] asks if the metarecursively enumerable degrees are elementarily equivalent to the r.e. degrees. In unpublished work, Slaman and Shore proved that they are not. This paper provides a simpler proof of that result and characterizes the degree of the theory as [Formula: see text] or, equivalently, that of the truth set of [Formula: see text].
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  48.  9
    A hierarchy of Turing degrees: a transfinite hierarchy of lowness notions in the computably enumerable degrees, unifying classes, and natural definability.R. G. Downey - 2020 - Princeton: Princeton University Press. Edited by Noam Greenberg.
    This book presents new results in computability theory, a branch of mathematical logic and computer science that has become increasingly relevant in recent years. The field's connections with disparate areas of mathematical logic and mathematics more generally have grown deeper, and now have a variety of applications in topology, group theory, and other subfields. This monograph establishes new directions in the field, blending classic results with modern research areas such as algorithmic randomness. The significance of the book lies not only (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  49.  27
    A necessary and sufficient condition for embedding principally decomposable finite lattices into the computably enumerable degrees.M. Lerman - 2000 - Annals of Pure and Applied Logic 101 (2-3):275-297.
    We present a necessary and sufficient condition for the embeddability of a principally decomposable finite lattice into the computably enumerable degrees. This improves a previous result which required that, in addition, the lattice be ranked. The same condition is also necessary and sufficient for a finite lattice to be embeddable below every non-zero computably enumerable degree.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  50. LD BEKLEMISHEV Proof-theoretic analysis by iterated reflection 515 EJ GRIFFITHS Limit lemmas and jump inversion in the enumeration degrees 553.M. Kim, D. Cenzer, Pg Hinman & L. Newelski - 2003 - Archive for Mathematical Logic 42 (6):614.
1 — 50 / 958