A Hierarchy of Computably Enumerable Degrees

Bulletin of Symbolic Logic 24 (1):53-89 (2018)
  Copy   BIBTEX

Abstract

We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of${\rm{\Delta }}_2^0$functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jockusch, and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable antichain.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,247

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Lattice embeddings and array noncomputable degrees.Stephen M. Walk - 2004 - Mathematical Logic Quarterly 50 (3):219.
Complementing cappable degrees in the difference hierarchy.Rod Downey, Angsheng Li & Guohua Wu - 2004 - Annals of Pure and Applied Logic 125 (1-3):101-118.
Embeddings of N5 and the contiguous degrees.Klaus Ambos-Spies & Peter A. Fejer - 2001 - Annals of Pure and Applied Logic 112 (2-3):151-188.
Minimal weak truth table degrees and computably enumerable Turing degrees.R. G. Downey - 2020 - Providence, RI: American Mathematical Society. Edited by Keng Meng Ng & Reed Solomon.
On definable filters in computably enumerable degrees.Wei Wang & Decheng Ding - 2007 - Annals of Pure and Applied Logic 147 (1):71-83.
The computable Lipschitz degrees of computably enumerable sets are not dense.Adam R. Day - 2010 - Annals of Pure and Applied Logic 161 (12):1588-1602.
An Interval of Computably Enumerable Isolating Degrees.Matthew C. Salts - 1999 - Mathematical Logic Quarterly 45 (1):59-72.

Analytics

Added to PP
2018-04-27

Downloads
27 (#825,296)

6 months
5 (#1,039,842)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Effective Domination and the Bounded Jump.Keng Meng Ng & Hongyuan Yu - 2020 - Notre Dame Journal of Formal Logic 61 (2):203-225.

Add more citations

References found in this work

Recursive well-orderings.Clifford Spector - 1955 - Journal of Symbolic Logic 20 (2):151-163.
Bounding minimal pairs.A. H. Lachlan - 1979 - Journal of Symbolic Logic 44 (4):626-642.
Minimal pairs and high recursively enumerable degrees.S. B. Cooper - 1974 - Journal of Symbolic Logic 39 (4):655-660.
Double Jumps of Minimal Degrees.Carl G. Jockusch & David B. Posner - 1978 - Journal of Symbolic Logic 43 (4):715 - 724.

View all 22 references / Add more references