Cupping and definability in the local structure of the enumeration degrees

Journal of Symbolic Logic 77 (1):133-158 (2012)
  Copy   BIBTEX

Abstract

We show that every splitting of ${0}_{\mathrm{e}}^{\prime }$ in the local structure of the enumeration degrees, $$\mathcal{G}_{e} , contains at least one low-cuppable member. We apply this new structural property to show that the classes of all $\mathcal{K}$ -pairs in $\mathcal{G}_{e}$ , all downwards properly ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degrees and all upwards properly ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degrees are first order definable in $\mathcal{G}_{e}$

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,337

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2012-01-21

Downloads
29 (#774,799)

6 months
7 (#706,906)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

The automorphism group of the enumeration degrees.Mariya I. Soskova - 2016 - Annals of Pure and Applied Logic 167 (10):982-999.

Add more citations

References found in this work

Reducibility and Completeness for Sets of Integers.Richard M. Friedberg & Hartley Rogers - 1959 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 5 (7-13):117-125.
Reducibility and Completeness for Sets of Integers.Richard M. Friedberg & Hartley Rogers - 1959 - Mathematical Logic Quarterly 5 (7‐13):117-125.
Then-rea enumeration degrees are dense.Alistair H. Lachlan & Richard A. Shore - 1992 - Archive for Mathematical Logic 31 (4):277-285.
Definability of the jump operator in the enumeration degrees.I. Sh Kalimullin - 2003 - Journal of Mathematical Logic 3 (02):257-267.
Computability Theory.Barry Cooper - 2010 - Journal of the Indian Council of Philosophical Research 27 (1).

View all 10 references / Add more references