Results for ' computation'

955 found
Order:
  1. The fortieth annual lecture series 1999-2000.Brain Computations & an Inevitable Conflict - 2000 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 31:199-200.
  2. Randomness and Recursive Enumerability.Siam J. Comput - unknown
    One recursively enumerable real α dominates another one β if there are nondecreasing recursive sequences of rational numbers (a[n] : n ∈ ω) approximating α and (b[n] : n ∈ ω) approximating β and a positive constant C such that for all n, C(α − a[n]) ≥ (β − b[n]). See [R. M. Solovay, Draft of a Paper (or Series of Papers) on Chaitin’s Work, manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 1974, p. 215] and [G. J. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  3. Computation and Cognition: Toward a Foundation for Cognitive Science.Zenon W. Pylyshyn - 1984 - Cambridge: MIT Press.
    This systematic investigation of computation and mental phenomena by a noted psychologist and computer scientist argues that cognition is a form of computation, that the semantic contents of mental states are encoded in the same general way as computer representations are encoded. It is a rich and sustained investigation of the assumptions underlying the directions cognitive science research is taking. 1 The Explanatory Vocabulary of Cognition 2 The Explanatory Role of Representations 3 The Relevance of Computation 4 (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1063 citations  
  4. What is morphological computation? On how the body contributes to cognition and control.Vincent Müller & Matej Hoffmann - 2017 - Artificial Life 23 (1):1-24.
    The contribution of the body to cognition and control in natural and artificial agents is increasingly described as “off-loading computation from the brain to the body”, where the body is said to perform “morphological computation”. Our investigation of four characteristic cases of morphological computation in animals and robots shows that the ‘off-loading’ perspective is misleading. Actually, the contribution of body morphology to cognition and control is rarely computational, in any useful sense of the word. We thus distinguish (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  5. The varieties of computation: A reply.David Chalmers - 2012 - Journal of Cognitive Science 2012 (3):211-248.
    Computation is central to the foundations of modern cognitive science, but its role is controversial. Questions about computation abound: What is it for a physical system to implement a computation? Is computation sufficient for thought? What is the role of computation in a theory of cognition? What is the relation between different sorts of computational theory, such as connectionism and symbolic computation? In this paper I develop a systematic framework that addresses all of these (...)
    Direct download  
     
    Export citation  
     
    Bookmark   27 citations  
  6. Analogue Computation and Representation.Corey J. Maley - 2023 - British Journal for the Philosophy of Science 74 (3):739-769.
    Relative to digital computation, analogue computation has been neglected in the philosophical literature. To the extent that attention has been paid to analogue computation, it has been misunderstood. The received view—that analogue computation has to do essentially with continuity—is simply wrong, as shown by careful attention to historical examples of discontinuous, discrete analogue computers. Instead of the received view, I develop an account of analogue computation in terms of a particular type of analogue representation that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  7. Information processing, computation, and cognition.Gualtiero Piccinini & Andrea Scarantino - 2011 - Journal of Biological Physics 37 (1):1-38.
    Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both – although others disagree vehemently. Yet different cognitive scientists use ‘computation’ and ‘information processing’ to mean different things, sometimes without realizing that they do. In addition, computation and information processing are surrounded by several myths; first and foremost, that they are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   72 citations  
  8. Computation is just interpretable symbol manipulation; cognition isn't.Stevan Harnad - 1994 - Minds and Machines 4 (4):379-90.
    Computation is interpretable symbol manipulation. Symbols are objects that are manipulated on the basis of rules operating only on theirshapes, which are arbitrary in relation to what they can be interpreted as meaning. Even if one accepts the Church/Turing Thesis that computation is unique, universal and very near omnipotent, not everything is a computer, because not everything can be given a systematic interpretation; and certainly everything can''t be givenevery systematic interpretation. But even after computers and computation have (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  9.  77
    Computation and Cognition: Toward a Foundation for Cognitive Science.John Haugeland - 1987 - Philosophy of Science 54 (2):309-311.
  10.  55
    Randomness Through Computation: Some Answers, More Questions.Hector Zenil (ed.) - 2011 - World Scientific.
    The book is intended to explain the larger and intuitive concept of randomness by means of computation, particularly through algorithmic complexity and recursion theory. It also includes the transcriptions (by A. German) of two panel discussion on the topics: Is The Universe Random?, held at the University of Vermont in 2007; and What is Computation? (How) Does Nature Compute?, held at the University of Indiana Bloomington in 2008. The book is intended to the general public, undergraduate and graduate (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  7
    Domain Theory, Logic and Computation: Proceedings of the 2nd International Symposium on Domain Theory, Sichuan, China, October 2001.Guo-Qiang Zhang, J. Lawson, Yan-M. Liu & Mao-Kang Luo (eds.) - 2003 - Dordrecht, Netherland: Springer.
    Domains are mathematical structures for information and approximation; they combine order-theoretic, logical, and topological ideas and provide a natural framework for modelling and reasoning about computation. The theory of domains has proved to be a useful tool for programming languages and other areas of computer science, and for applications in mathematics. Included in this proceedings volume are selected papers of original research presented at the 2nd International Symposium on Domain Theory in Chengdu, China. With authors from France, Germany, Great (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12. Computation and cognition: Issues in the foundation of cognitive science.Zenon W. Pylyshyn - 1980 - Behavioral and Brain Sciences 3 (1):111-32.
    The computational view of mind rests on certain intuitions regarding the fundamental similarity between computation and cognition. We examine some of these intuitions and suggest that they derive from the fact that computers and human organisms are both physical systems whose behavior is correctly described as being governed by rules acting on symbolic representations. Some of the implications of this view are discussed. It is suggested that a fundamental hypothesis of this approach is that there is a natural domain (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   668 citations  
  13. Computation, individuation, and the received view on representation.Mark Sprevak - 2010 - Studies in History and Philosophy of Science Part A 41 (3):260-270.
    The ‘received view’ about computation is that all computations must involve representational content. Egan and Piccinini argue against the received view. In this paper, I focus on Egan’s arguments, claiming that they fall short of establishing that computations do not involve representational content. I provide positive arguments explaining why computation has to involve representational content, and how that representational content may be of any type. I also argue that there is no need for computational psychology to be individualistic. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   60 citations  
  14.  22
    Hector freytes, Antonio ledda, Giuseppe sergioli and.Roberto Giuntini & Probabilistic Logics in Quantum Computation - 2013 - In Hanne Andersen, Dennis Dieks, Wenceslao J. Gonzalez, Thomas Uebel & Gregory Wheeler, New Challenges to Philosophy of Science. Springer Verlag. pp. 49.
    Direct download  
     
    Export citation  
     
    Bookmark  
  15.  31
    Embedding Logics in the Local Computation Framework.Nic Wilson & Jérôme Mengin - 2001 - Journal of Applied Non-Classical Logics 11 (3):239-267.
    The Local Computation Framework has been used to improve the efficiency of computation in various uncertainty formalisms. This paper shows how the framework can be used for the computation of logical deduction in two different ways; the first way involves embedding model structures in the framework; the second, and more direct, way involves embedding sets of formulae. This work can be applied to many of the logics developed for different kinds of reasoning, including predicate calculus, modal logics, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  16. Chaotic neurons and analog computation.Kazuyuki Aihara & Jun Kyung Ryeu - 2001 - Behavioral and Brain Sciences 24 (5):810-811.
    Chaotic dynamics can be related to analog computation. A possibility of electronically implementing the chaos -driven contracting system in the target article is explored with an analog electronic circuit with inevitable noise from the viewpoint of analog computation with chaotic neurons.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  17.  13
    Logic, Language and Computation.Seiki Akama (ed.) - 1997 - Dordrecht, Netherland: Springer.
    The editors of the Applied Logic Series are happy to present to the reader the fifth volume in the series, a collection of papers on Logic, Language and Computation. One very striking feature of the application of logic to language and to computation is that it requires the combination, the integration and the use of many diverse systems and methodologies - all in the same single application. The papers in this volume will give the reader a glimpse into (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  39
    Dynamic computation and context effects in the hybrid architecture akira.Giovanni Pezzulo & Gianguglielmo Calvi - 2001 - In P. Bouquet V. Akman, Modeling and Using Context. Springer. pp. 368--381.
    Direct download  
     
    Export citation  
     
    Bookmark  
  19. Paul M. kjeldergaard.Pittsburgh Computations Centers - 1968 - In T. Dixon & Deryck Horton, Verbal Behavior and General Behavior Theory. Prentice-Hall.
    No categories
     
    Export citation  
     
    Bookmark  
  20.  31
    On computation and cognition: Toward a foundation of cognitive science.Zenon Pylyshyn - 1989 - Artificial Intelligence 38 (2):248-251.
  21. Computation, among other things, is beneath us.Selmer Bringsjord - 1994 - Minds and Machines 4 (4):469-88.
    What''s computation? The received answer is that computation is a computer at work, and a computer at work is that which can be modelled as a Turing machine at work. Unfortunately, as John Searle has recently argued, and as others have agreed, the received answer appears to imply that AI and Cog Sci are a royal waste of time. The argument here is alarmingly simple: AI and Cog Sci (of the Strong sort, anyway) are committed to the view (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  22.  7
    A Model for Proustian Decay.Computer Lars - 2024 - Nordic Journal of Aesthetics 33 (67).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23. Quantum computation and pseudotelepathic games.Jeffrey Bub - 2008 - Philosophy of Science 75 (4):458-472.
    A quantum algorithm succeeds not because the superposition principle allows ‘the computation of all values of a function at once’ via ‘quantum parallelism’, but rather because the structure of a quantum state space allows new sorts of correlations associated with entanglement, with new possibilities for information‐processing transformations between correlations, that are not possible in a classical state space. I illustrate this with an elementary example of a problem for which a quantum algorithm is more efficient than any classical algorithm. (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  24.  43
    Computation and the three worlds.Mario Radovan - 2000 - Minds and Machines 10 (2):255-265.
    Discussions about the achievements and limitations of the various approaches to the development of intelligent systems can have an essential impact on empirically based research, and with that also on the future development of computer technologies. However, such discussions are often based on vague concepts and assumptions. In this context, we claim that the proposed `three-world ontology'' offers the most appropriate conceptual framework in which the basic problems concerned with cognition and computation can be suitably expressed and discussed, although (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  25.  15
    Computation and uncertainty in regulated synergetic machines.Panos A. Ligomenides - 1991 - In Bernadette Bouchon-Meunier, Ronald R. Yager & Lotfi A. Zadeh, Uncertainty in Knowledge Bases: 3rd International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU'90, Paris, France, July 2 - 6, 1990. Proceedings. Springer. pp. 413--422.
    Direct download  
     
    Export citation  
     
    Bookmark  
  26. Languages, machines, and classical computation.Luis M. Augusto - 2019 - London, UK: College Publications.
    3rd ed, 2021. A circumscription of the classical theory of computation building up from the Chomsky hierarchy. With the usual topics in formal language and automata theory.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  27. Continuous Computation and the Emergence of the Discrete.Giorgio de Santillana - 1994 - In Karl H. Pribram, Origins: Brain and Self Organization. Lawrence Erlbaum.
     
    Export citation  
     
    Bookmark  
  28. Physical Computation: How General are Gandy’s Principles for Mechanisms?B. Jack Copeland & Oron Shagrir - 2007 - Minds and Machines 17 (2):217-231.
    What are the limits of physical computation? In his ‘Church’s Thesis and Principles for Mechanisms’, Turing’s student Robin Gandy proved that any machine satisfying four idealised physical ‘principles’ is equivalent to some Turing machine. Gandy’s four principles in effect define a class of computing machines (‘Gandy machines’). Our question is: What is the relationship of this class to the class of all (ideal) physical computing machines? Gandy himself suggests that the relationship is identity. We do not share this view. (...)
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  29.  37
    Evolutionary computation: Toward a new philosophy of machine intelligence.Thomas B.�ck - 1997 - Complexity 2 (4):28-30.
  30.  49
    A Computation of δ 5 1.Howard S. Becker & Steve Jackson - 2002 - Bulletin of Symbolic Logic 8 (4):546.
  31. Content, computation and externalism.Oron Shagrir - 2001 - Mind 110 (438):369-400.
    The paper presents an extended argument for the claim that mental content impacts the computational individuation of a cognitive system (section 2). The argument starts with the observation that a cognitive system may simultaneously implement a variety of different syntactic structures, but that the computational identity of a cognitive system is given by only one of these implemented syntactic structures. It is then asked what are the features that determine which of implemented syntactic structures is the computational structure of the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   74 citations  
  32.  10
    Computer Science Logic: 11th International Workshop, CSL'97, Annual Conference of the EACSL, Aarhus, Denmark, August 23-29, 1997, Selected Papers.M. Nielsen, Wolfgang Thomas & European Association for Computer Science Logic - 1998 - Springer Verlag.
    This book constitutes the strictly refereed post-workshop proceedings of the 11th International Workshop on Computer Science Logic, CSL '97, held as the 1997 Annual Conference of the European Association on Computer Science Logic, EACSL, in Aarhus, Denmark, in August 1997. The volume presents 26 revised full papers selected after two rounds of refereeing from initially 92 submissions; also included are four invited papers. The book addresses all current aspects of computer science logics and its applications and thus presents the state (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  33. Quantum computation in brain microtubules.Stuart R. Hameroff - 2002 - Physical Review E 65 (6):1869--1896.
    Proposals for quantum computation rely on superposed states implementing multiple computations simultaneously, in parallel, according to quantum linear superposition (e.g., Benioff, 1982; Feynman, 1986; Deutsch, 1985, Deutsch and Josza, 1992). In principle, quantum computation is capable of specific applications beyond the reach of classical computing (e.g., Shor, 1994). A number of technological systems aimed at realizing these proposals have been suggested and are being evaluated as possible substrates for quantum computers (e.g. trapped ions, electron spins, quantum dots, nuclear (...)
     
    Export citation  
     
    Bookmark   50 citations  
  34.  25
    Bayesian Computation Methods for Inference in Stochastic Kinetic Models.Eugenia Koblents, Inés P. Mariño & Joaquín Míguez - 2019 - Complexity 2019:1-15.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  9
    Contingent Computation: Abstraction, Experience, and Indeterminacy in Computational Aesthetics.M. Beatrice Fazi - 2018 - London: Rowman & Littlefield International.
    In Contingent Computation, M. Beatrice Fazi offers a new theoretical perspective through which we can engage philosophically with computing. The book proves that aesthetics is a viable mode of investigating contemporary computational systems. It does so by advancing an original conception of computational aesthetics that does not just concern art made by or with computers, but rather the modes of being and becoming of computational processes. Contingent Computation mobilises the philosophies of Gilles Deleuze and Alfred North Whitehead in (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  36. Content, computation, and individualism in vision theory.Keith Butler - 1996 - Analysis 56 (3):146-154.
  37. The Explanatory Role of Computation in Cognitive Science.Nir Fresco - 2012 - Minds and Machines 22 (4):353-380.
    Which notion of computation (if any) is essential for explaining cognition? Five answers to this question are discussed in the paper. (1) The classicist answer: symbolic (digital) computation is required for explaining cognition; (2) The broad digital computationalist answer: digital computation broadly construed is required for explaining cognition; (3) The connectionist answer: sub-symbolic computation is required for explaining cognition; (4) The computational neuroscientist answer: neural computation (that, strictly, is neither digital nor analogue) is required for (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  38. In computation, parallel is nothing, physical everything.Selmer Bringsjord - 2001 - Minds and Machines 11 (1):95-99.
    Andrew Boucher (1997) argues that ``parallel computation is fundamentally different from sequential computation'' (p. 543), and that this fact provides reason to be skeptical about whether AI can produce a genuinely intelligent machine. But parallelism, as I prove herein, is irrelevant. What Boucher has inadvertently glimpsed is one small part of a mathematical tapestry portraying the simple but undeniable fact that physical computation can be fundamentally different from ordinary, ``textbook'' computation (whether parallel or sequential). This tapestry (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  39. Computation and content.Frances Egan - 1995 - Philosophical Review 104 (2):181-203.
  40. Constructivism and Computation: Can Computer-Based Modeling Add to the Case for Constructivism?M. Füllsack - 2013 - Constructivist Foundations 9 (1):7-16.
    Problem: Is constructivism contradicted by the reductionist determinism inherent in digital computation? Method: Review of examples from dynamical systems sciences, agent-based modeling and artificial intelligence. Results: Recent scientific insights seem to give reason to consider constructivism in line with what computation is adding to our knowledge of interacting dynamics and the functioning of our brains. Implications: Constructivism is not necessarily contradictory to digital computation, in particular to computer-based modeling and simulation. Constructivist content: When viewed through the lens (...)
     
    Export citation  
     
    Bookmark  
  41. A Cognitive Computation Fallacy? Cognition, Computations and Panpsychism.John Mark Bishop - 2009 - Cognitive Computation 1 (3):221-233.
    The journal of Cognitive Computation is defined in part by the notion that biologically inspired computational accounts are at the heart of cognitive processes in both natural and artificial systems. Many studies of various important aspects of cognition (memory, observational learning, decision making, reward prediction learning, attention control, etc.) have been made by modelling the various experimental results using ever-more sophisticated computer programs. In this manner progressive inroads have been made into gaining a better understanding of the many components (...)
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  42. Computation in Non-Classical Foundations?Toby Meadows & Zach Weber - 2016 - Philosophers' Imprint 16.
    The Church-Turing Thesis is widely regarded as true, because of evidence that there is only one genuine notion of computation. By contrast, there are nowadays many different formal logics, and different corresponding foundational frameworks. Which ones can deliver a theory of computability? This question sets up a difficult challenge: the meanings of basic mathematical terms are not stable across frameworks. While it is easy to compare what different frameworks say, it is not so easy to compare what they mean. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  43.  63
    Theory of quantum computation and philosophy of mathematics. Part I.Krzysztof Wójtowicz - 2009 - Logic and Logical Philosophy 18 (3-4):313-332.
    The aim of this paper is to present some basic notions of the theory of quantum computing and to compare them with the basic notions of the classical theory of computation. I am convinced, that the results of quantum computation theory (QCT) are not only interesting in themselves, but also should be taken into account in discussions concerning the nature of mathematical knowledge. The philosophical discussion will however be postponed to another paper. QCT seems not to be well-known (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  44.  15
    Quantum computation, quantum theory and AI.Mingsheng Ying - 2010 - Artificial Intelligence 174 (2):162-176.
  45.  8
    The Significance of Relativistic Computation for the Philosophy of Mathematics.Krzysztof Wójtowicz - 2021 - In Judit Madarász & Gergely Székely, Hajnal Andréka and István Németi on Unity of Science: From Computing to Relativity Theory Through Algebraic Logic. Springer. pp. 165-183.
    In the paper I discuss the importance of relativistic hypercomputation for the philosophy of mathematics, in particular for our understanding of mathematical knowledge. I also discuss the problem of the explanatory role of mathematics in physics and argue that relativistic computation fits very well into the so-called programming account. Relativistic computation reveals an interesting interplay between the empirical realm and the realm of very abstract mathematical principles that even exceed standard mathematics and suggests, that such principles might play (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  46. On implementing a computation.David J. Chalmers - 1994 - Minds and Machines 4 (4):391-402.
    To clarify the notion of computation and its role in cognitive science, we need an account of implementation, the nexus between abstract computations and physical systems. I provide such an account, based on the idea that a physical system implements a computation if the causal structure of the system mirrors the formal structure of the computation. The account is developed for the class of combinatorial-state automata, but is sufficiently general to cover all other discrete computational formalisms. The (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   58 citations  
  47.  17
    Computation misrepresented: The procedural/declarative controversy exhumed.Henry Thompson - 1983 - Behavioral and Brain Sciences 6 (3):415.
  48.  30
    Computation, Dynamics, and Cognition.Marco Giunti - 1997 - Oxford University Press.
    This book explores the application of dynamical theory to cognitive science. Giunti shows how the dynamical approach can illuminate problems of cognition, information processing, consciousness, meaning, and the relation between body and mind.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  49. Enzymatic computation and cognitive modularity.H. Clark Barrett - 2005 - Mind and Language 20 (3):259-87.
    Currently, there is widespread skepticism that higher cognitive processes, given their apparent flexibility and globality, could be carried out by specialized computational devices, or modules. This skepticism is largely due to Fodor’s influential definition of modularity. From the rather flexible catalogue of possible modular features that Fodor originally proposed has emerged a widely held notion of modules as rigid, informationally encapsulated devices that accept highly local inputs and whose opera- tions are insensitive to context. It is a mistake, however, to (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   63 citations  
  50. (1 other version)Content, computation, and externalism.Christopher Peacocke - 1994 - Mind and Language 9 (3):227-264.
1 — 50 / 955