Results for ' computably enumerable equivalence relation'

982 found
Order:
  1.  37
    Universal computably enumerable equivalence relations.Uri Andrews, Steffen Lempp, Joseph S. Miller, Keng Meng Ng, Luca San Mauro & Andrea Sorbi - 2014 - Journal of Symbolic Logic 79 (1):60-88.
  2. Computably enumerable equivalence relations.Su Gao & Peter Gerdes - 2001 - Studia Logica 67 (1):27-59.
    We study computably enumerable equivalence relations (ceers) on N and unravel a rich structural theory for a strong notion of reducibility among ceers.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  3.  28
    On isomorphism classes of computably enumerable equivalence relations.Uri Andrews & Serikzhan A. Badaev - 2020 - Journal of Symbolic Logic 85 (1):61-86.
    We examine how degrees of computably enumerable equivalence relations under computable reduction break down into isomorphism classes. Two ceers are isomorphic if there is a computable permutation of ω which reduces one to the other. As a method of focusing on nontrivial differences in isomorphism classes, we give special attention to weakly precomplete ceers. For any degree, we consider the number of isomorphism types contained in the degree and the number of isomorphism types of weakly precomplete ceers (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  4.  20
    Weakly precomplete computably enumerable equivalence relations.Serikzhan Badaev & Andrea Sorbi - 2016 - Mathematical Logic Quarterly 62 (1-2):111-127.
    Using computable reducibility ⩽ on equivalence relations, we investigate weakly precomplete ceers (a “ceer” is a computably enumerable equivalence relation on the natural numbers), and we compare their class with the more restricted class of precomplete ceers. We show that there are infinitely many isomorphism types of universal (in fact uniformly finitely precomplete) weakly precomplete ceers, that are not precomplete; and there are infinitely many isomorphism types of non‐universal weakly precomplete ceers. Whereas the Visser space (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  42
    Jumps of computably enumerable equivalence relations.Uri Andrews & Andrea Sorbi - 2018 - Annals of Pure and Applied Logic 169 (3):243-259.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  6.  17
    The complexity of index sets of classes of computably enumerable equivalence relations.Uri Andrews & Andrea Sorbi - 2016 - Journal of Symbolic Logic 81 (4):1375-1395.
    Let$ \le _c $be computable the reducibility on computably enumerable equivalence relations. We show that for every ceerRwith infinitely many equivalence classes, the index sets$\left\{ {i:R_i \le _c R} \right\}$,$\left\{ {i:R_i \ge _c R} \right\}$, and$\left\{ {i:R_i \equiv _c R} \right\}$are${\rm{\Sigma }}_3^0$complete, whereas in caseRhas only finitely many equivalence classes, we have that$\left\{ {i:R_i \le _c R} \right\}$is${\rm{\Pi }}_2^0$complete, and$\left\{ {i:R \ge _c R} \right\}$ is${\rm{\Sigma }}_2^0$complete. Next, solving an open problem from [1], we prove (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  36
    Recursively Enumerable Equivalence Relations Modulo Finite Differences.André Nies - 1994 - Mathematical Logic Quarterly 40 (4):490-518.
    We investigate the upper semilattice Eq* of recursively enumerable equivalence relations modulo finite differences. Several natural subclasses are shown to be first-order definable in Eq*. Building on this we define a copy of the structure of recursively enumerable many-one degrees in Eq*, thereby showing that Th has the same computational complexity as the true first-order arithmetic.
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  8.  51
    Computable Reducibility of Equivalence Relations and an Effective Jump Operator.John D. Clemens, Samuel Coskey & Gianni Krakoff - forthcoming - Journal of Symbolic Logic:1-22.
    We introduce the computable FS-jump, an analog of the classical Friedman–Stanley jump in the context of equivalence relations on the natural numbers. We prove that the computable FS-jump is proper with respect to computable reducibility. We then study the effect of the computable FS-jump on computably enumerable equivalence relations (ceers).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  9.  23
    Classifying equivalence relations in the Ershov hierarchy.Nikolay Bazhenov, Manat Mustafa, Luca San Mauro, Andrea Sorbi & Mars Yamaleev - 2020 - Archive for Mathematical Logic 59 (7-8):835-864.
    Computably enumerable equivalence relations received a lot of attention in the literature. The standard tool to classify ceers is provided by the computable reducibility \. This gives rise to a rich degree structure. In this paper, we lift the study of c-degrees to the \ case. In doing so, we rely on the Ershov hierarchy. For any notation a for a non-zero computable ordinal, we prove several algebraic properties of the degree structure induced by \ on the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  10.  28
    On the Degree Structure of Equivalence Relations Under Computable Reducibility.Keng Meng Ng & Hongyuan Yu - 2019 - Notre Dame Journal of Formal Logic 60 (4):733-761.
    We study the degree structure of the ω-c.e., n-c.e., and Π10 equivalence relations under the computable many-one reducibility. In particular, we investigate for each of these classes of degrees the most basic questions about the structure of the partial order. We prove the existence of the greatest element for the ω-c.e. and n-computably enumerable equivalence relations. We provide computable enumerations of the degrees of ω-c.e., n-c.e., and Π10 equivalence relations. We prove that for all the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  11.  30
    On the Structure of Computable Reducibility on Equivalence Relations of Natural Numbers.Uri Andrews, Daniel F. Belin & Luca San Mauro - 2023 - Journal of Symbolic Logic 88 (3):1038-1063.
    We examine the degree structure $\operatorname {\mathrm {\mathbf {ER}}}$ of equivalence relations on $\omega $ under computable reducibility. We examine when pairs of degrees have a least upper bound. In particular, we show that sufficiently incomparable pairs of degrees do not have a least upper bound but that some incomparable degrees do, and we characterize the degrees which have a least upper bound with every finite equivalence relation. We show that the natural classes of finite, light, and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12. The category of equivalence relations.Luca San Mauro, Valentino Delle Rose & Andrea Sorbi - 2021 - Algebra and Logic 5 (60):295-307.
    We make some beginning observations about the category Eq of equivalence relations on the set of natural numbers, where a morphism between two equivalence relations R and S is a mapping from the set of R-equivalence classes to that of S-equivalence classes, which is induced by a computable function. We also consider some full subcategories of Eq, such as the category Eq(Σ01) of computably enumerable equivalence relations (called ceers), the category Eq(Π01) of co- (...) enumerable equivalence relations, and the category Eq(Dark*) whose objects are the so-called dark ceers plus the ceers with finitely many equivalence classes. Although in all these categories the monomorphisms coincide with the injective morphisms, we show that in Eq(Σ01) the epimorphisms coincide with the onto morphisms, but in Eq(Π01) there are epimorphisms that are not onto. Moreover, Eq, Eq(Σ01), and Eq(Dark*) are closed under finite products, binary coproducts, and coequalizers, but we give an example of two morphisms in Eq(Π01) whose coequalizer in Eq is not an object of Eq(Π01). (shrink)
     
    Export citation  
     
    Bookmark  
  13.  70
    Linear orders realized by C.e. Equivalence relations.Ekaterina Fokina, Bakhadyr Khoussainov, Pavel Semukhin & Daniel Turetsky - 2016 - Journal of Symbolic Logic 81 (2):463-482.
    LetEbe a computably enumerable equivalence relation on the setωof natural numbers. We say that the quotient set$\omega /E$realizesa linearly ordered set${\cal L}$if there exists a c.e. relation ⊴ respectingEsuch that the induced structure is isomorphic to${\cal L}$. Thus, one can consider the class of all linearly ordered sets that are realized by$\omega /E$; formally,${\cal K}\left = \left\{ {{\cal L}\,|\,{\rm{the}}\,{\rm{order}}\, - \,{\rm{type}}\,{\cal L}\,{\rm{is}}\,{\rm{realized}}\,{\rm{by}}\,E} \right\}$. In this paper we study the relationship between computability-theoretic properties ofEand algebraic properties (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  14.  5
    Measuring the complexity of reductions between equivalence relations.Luca San Mauro, Ekaterina Fokina & Dino Rossegger - 2019 - Computability 3 (8):265-280.
    Computable reducibility is a well-established notion that allows to compare the complexity of various equivalence relations over the natural numbers. We generalize computable reducibility by introducing degree spectra of reducibility and bi-reducibility. These spectra provide a natural way of measuring the complexity of reductions between equivalence relations. We prove that any upward closed collection of Turing degrees with a countable basis can be realised as a reducibility spectrum or as a bi-reducibility spectrum. We show also that there is (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  15.  19
    Initial Segments of the Degrees of Ceers.Uri Andrews & Andrea Sorbi - 2022 - Journal of Symbolic Logic 87 (3):1260-1282.
    It is known that every non-universal self-full degree in the structure of the degrees of computably enumerable equivalence relations (ceers) under computable reducibility has exactly one strong minimal cover. This leaves little room for embedding wide partial orders as initial segments using self-full degrees. We show that considerably more can be done by staying entirely inside the collection of non-self-full degrees. We show that the poset can be embedded as an initial segment of the degrees of ceers (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  35
    The theory of ceers computes true arithmetic.Uri Andrews, Noah Schweber & Andrea Sorbi - 2020 - Annals of Pure and Applied Logic 171 (8):102811.
    We show that the theory of the partial order of computably enumerable equivalence relations (ceers) under computable reduction is 1-equivalent to true arithmetic. We show the same result for the structure comprised of the dark ceers and the structure comprised of the light ceers. We also show the same for the structure of L-degrees in the dark, light, or complete structure. In each case, we show that there is an interpretable copy of (N, +, \times) .
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  17.  43
    The Block Relation in Computable Linear Orders.Michael Moses - 2011 - Notre Dame Journal of Formal Logic 52 (3):289-305.
    The block relation B(x,y) in a linear order is satisfied by elements that are finitely far apart; a block is an equivalence class under this relation. We show that every computable linear order with dense condensation-type (i.e., a dense collection of blocks) but no infinite, strongly η-like interval (i.e., with all blocks of size less than some fixed, finite k ) has a computable copy with the nonblock relation ¬ B(x,y) computably enumerable. This implies (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  18.  20
    Effective Inseparability, Lattices, and Preordering Relations.Uri Andrews & Andrea Sorbi - 2021 - Review of Symbolic Logic 14 (4):838-865.
    We study effectively inseparable (abbreviated as e.i.) prelattices (i.e., structures of the form$L = \langle \omega, \wedge, \vee,0,1,{ \le _L}\rangle$whereωdenotes the set of natural numbers and the following four conditions hold: (1)$\wedge, \vee$are binary computable operations; (2)${ \le _L}$is a computably enumerable preordering relation, with$0{ \le _L}x{ \le _L}1$for everyx; (3) the equivalence relation${ \equiv _L}$originated by${ \le _L}$is a congruence onLsuch that the corresponding quotient structure is a nontrivial bounded lattice; (4) the${ \equiv _L}$- (...) classes of 0 and 1 form an effectively inseparable pair of sets). Solving a problem in (Montagna & Sorbi, 1985) we show (Theorem 4.2), that ifLis an e.i. prelattice then${ \le _L}$is universal with respect to all c.e. preordering relations, i.e., for every c.e. preordering relationRthere exists a computable functionfreducingRto${ \le _L}$, i.e.,$xRy$if and only if$f\left( x \right){ \le _L}f\left( y \right)$, for all$x,y$. In fact (Corollary 5.3)${ \le _L}$is locally universal, i.e., for every pair$a{ < _L}b$and every c.e. preordering relationRone can find a reducing functionffromRto${ \le _L}$such that the range offis contained in the interval$\left\{ {x:a{ \le _L}x{ \le _L}b} \right\}$. Also (Theorem 5.7)${ \le _L}$is uniformly dense, i.e., there exists a computable functionfsuch that for every$a,b$if$a{ < _L}b$then$a{ < _L}f\left( {a,b} \right){ < _L}b$, and if$a{ \equiv _L}a\prime$and$b{ \equiv _L}b\prime$then$f\left( {a,b} \right){ \equiv _L}f\left( {a\prime,b\prime } \right)$. Some consequences and applications of these results are discussed: in particular (Corollary 7.2) for$n \ge 1$the c.e. preordering relation on${{\rm{\Sigma }}_n}$sentences yielded by the relation of provable implication of any c.e. consistent extension of Robinson’s systemRorQis locally universal and uniformly dense; and (Corollary 7.3) the c.e. preordering relation yielded by provable implication of any c.e. consistent extension of Heyting Arithmetic is locally universal and uniformly dense. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  22
    Elementary theories and hereditary undecidability for semilattices of numberings.Nikolay Bazhenov, Manat Mustafa & Mars Yamaleev - 2019 - Archive for Mathematical Logic 58 (3-4):485-500.
    A major theme in the study of degree structures of all types has been the question of the decidability or undecidability of their first order theories. This is a natural and fundamental question that is an important goal in the analysis of these structures. In this paper, we study decidability for theories of upper semilattices that arise from the theory of numberings. We use the following approach: given a level of complexity, say \, we consider the upper semilattice \ of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  56
    Constructive equivalence relations on computable probability measures.Laurent Bienvenu & Wolfgang Merkle - 2009 - Annals of Pure and Applied Logic 160 (3):238-254.
    A central object of study in the field of algorithmic randomness are notions of randomness for sequences, i.e., infinite sequences of zeros and ones. These notions are usually defined with respect to the uniform measure on the set of all sequences, but extend canonically to other computable probability measures. This way each notion of randomness induces an equivalence relation on the computable probability measures where two measures are equivalent if they have the same set of random sequences. In (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  21. Definability in the recursively enumerable degrees.André Nies, Richard A. Shore & Theodore A. Slaman - 1996 - Bulletin of Symbolic Logic 2 (4):392-404.
    §1. Introduction. Natural sets that can be enumerated by a computable function always seem to be either actually computable or of the same complexity as the Halting Problem, the complete r.e. set K. The obvious question, first posed in Post [1944] and since then called Post's Problem is then just whether there are r.e. sets which are neither computable nor complete, i.e., neither recursive nor of the same Turing degree as K?Let be the r.e. degrees, i.e., the r.e. sets modulo (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  22.  18
    (1 other version)On Some Properties of Recursively Enumerable Equivalence Relations.Stefano Baratella - 1989 - Mathematical Logic Quarterly 35 (3):261-268.
    Direct download  
     
    Export citation  
     
    Bookmark  
  23.  35
    Complexity of equivalence relations and preorders from computability theory.Egor Ianovski, Russell Miller, Keng Meng Ng & André Nies - 2014 - Journal of Symbolic Logic 79 (3):859-881.
    We study the relative complexity of equivalence relations and preorders from computability theory and complexity theory. Given binary relationsR,S, a componentwise reducibility is defined byR≤S⇔ ∃f∀x, y[x R y↔fS f].Here,fis taken from a suitable class of effective functions. For us the relations will be on natural numbers, andfmust be computable. We show that there is a${\rm{\Pi }}_1^0$-complete equivalence relation, but no${\rm{\Pi }}_k^0$-complete fork≥ 2. We show that${\rm{\Sigma }}_k^0$preorders arising naturally in the above-mentioned areas are${\rm{\Sigma }}_k^0$-complete. This includes (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  24.  21
    Computability Over Structures of Infinite Signature.Armin Hemmerling - 1998 - Mathematical Logic Quarterly 44 (3):394-416.
    Continuing the paper [7], in which the Blum-Shub-Smale approach to computability over the reals has been generalized to arbitrary algebraic structures, this paper deals with computability and recognizability over structures of infinite signature. It begins with discussing related properties of the linear and scalar real structures and of their discrete counterparts over the natural numbers. Then the existence of universal functions is shown to be equivalent to the effective encodability of the underlying structure. Such structures even have universal functions satisfying (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  36
    Pa Relative to an Enumeration Oracle.G. O. H. Jun Le, Iskander Sh Kalimullin, Joseph S. Miller & Mariya I. Soskova - 2023 - Journal of Symbolic Logic 88 (4):1497-1525.
    Recall that B is PA relative to A if B computes a member of every nonempty $\Pi ^0_1(A)$ class. This two-place relation is invariant under Turing equivalence and so can be thought of as a binary relation on Turing degrees. Miller and Soskova [23] introduced the notion of a $\Pi ^0_1$ class relative to an enumeration oracle A, which they called a $\Pi ^0_1{\left \langle {A}\right \rangle }$ class. We study the induced extension of the relation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  36
    Computably enumerable sets and quasi-reducibility.R. Downey, G. LaForte & A. Nies - 1998 - Annals of Pure and Applied Logic 95 (1-3):1-35.
    We consider the computably enumerable sets under the relation of Q-reducibility. We first give several results comparing the upper semilattice of c.e. Q-degrees, RQ, Q, under this reducibility with the more familiar structure of the c.e. Turing degrees. In our final section, we use coding methods to show that the elementary theory of RQ, Q is undecidable.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  27.  93
    Computability, enumerability, unsolvability, Directions in recursion theory, edited by S. B. Cooper, T. A. Slaman, and S. S. Wainer, London Mathematical Society lecture note series, no. 224, Cambridge University Press, Cambridge, New York, and Oakleigh, Victoria, 1996, vii + 347 pp. - Leo Harrington and Robert I. Soare, Dynamic properties of computably enumerable sets, Pp. 105–121. - Eberhard Herrmann, On the ∀∃-theory of the factor lattice by the major subset relation, Pp. 139–166. - Manuel Lerman, Embeddings into the recursively enumerable degrees, Pp. 185–204. - Xiaoding Yi, Extension of embeddings on the recursively enumerable degrees modulo the cappable degrees, Pp. 313–331. - André Nies, Relativization of structures arising from computability theory. Pp. 219–232. - Klaus Ambos-Spies, Resource-bounded genericity. Pp. 1–59. - Rod Downey, Carl G. Jockusch, and Michael Stob. Array nonrecursive degrees and genericity, Pp. 93–104. - Masahiro Kumabe, Degrees of generic sets, Pp. 167–183. [REVIEW]C. T. Chong - 1999 - Journal of Symbolic Logic 64 (3):1362-1365.
  28.  26
    The partial orderings of the computably enumerable ibT-degrees and cl-degrees are not elementarily equivalent.Klaus Ambos-Spies, Philipp Bodewig, Yun Fan & Thorsten Kräling - 2013 - Annals of Pure and Applied Logic 164 (5):577-588.
    We show that, in the partial ordering of the computably enumerable computable Lipschitz degrees, there is a degree a>0a>0 such that the class of the degrees which do not cup to a is not bounded by any degree less than a. Since Ambos-Spies [1] has shown that, in the partial ordering of the c.e. identity-bounded Turing degrees, for any degree a>0a>0 the degrees which do not cup to a are bounded by the 1-shift a+1a+1 of a where a+1 (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  29.  60
    Definable properties of the computably enumerable sets.Leo Harrington & Robert I. Soare - 1998 - Annals of Pure and Applied Logic 94 (1-3):97-125.
    Post in 1944 began studying properties of a computably enumerable set A such as simple, h-simple, and hh-simple, with the intent of finding a property guaranteeing incompleteness of A . From the observations of Post and Myhill , attention focused by the 1950s on properties definable in the inclusion ordering of c.e. subsets of ω, namely E = . In the 1950s and 1960s Tennenbaum, Martin, Yates, Sacks, Lachlan, Shoenfield and others produced a number of elegant results relating (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  30.  86
    (1 other version)Definable encodings in the computably enumerable sets.Peter A. Cholak & Leo A. Harrington - 2000 - Bulletin of Symbolic Logic 6 (2):185-196.
    The purpose of this communication is to announce some recent results on the computably enumerable sets. There are two disjoint sets of results; the first involves invariant classes and the second involves automorphisms of the computably enumerable sets. What these results have in common is that the guts of the proofs of these theorems uses a new form of definable coding for the computably enumerable sets.We will work in the structure of the computably (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  31.  46
    Borel equivalence relations and Lascar strong types.Krzysztof Krupiński, Anand Pillay & Sławomir Solecki - 2013 - Journal of Mathematical Logic 13 (2):1350008.
    The "space" of Lascar strong types, on some sort and relative to a given complete theory T, is in general not a compact Hausdorff topological space. We have at least three aims in this paper. The first is to show that spaces of Lascar strong types, as well as other related spaces and objects such as the Lascar group Gal L of T, have well-defined Borel cardinalities. The second is to compute the Borel cardinalities of the known examples as well (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  32.  62
    Infinite Time Decidable Equivalence Relation Theory.Samuel Coskey & Joel David Hamkins - 2011 - Notre Dame Journal of Formal Logic 52 (2):203-228.
    We introduce an analogue of the theory of Borel equivalence relations in which we study equivalence relations that are decidable by an infinite time Turing machine. The Borel reductions are replaced by the more general class of infinite time computable functions. Many basic aspects of the classical theory remain intact, with the added bonus that it becomes sensible to study some special equivalence relations whose complexity is beyond Borel or even analytic. We also introduce an infinite time (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  33.  58
    On Σ1 1 equivalence relations over the natural numbers.Ekaterina B. Fokina & Sy-David Friedman - 2012 - Mathematical Logic Quarterly 58 (1-2):113-124.
    We study the structure of Σ11 equivalence relations on hyperarithmetical subsets of ω under reducibilities given by hyperarithmetical or computable functions, called h-reducibility and FF-reducibility, respectively. We show that the structure is rich even when one fixes the number of properly equation imagei.e., Σ11 but not equation image equivalence classes. We also show the existence of incomparable Σ11 equivalence relations that are complete as subsets of ω × ω with respect to the corresponding reducibility on sets. We (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  34. A general framework for priority arguments.Steffen Lempp & Manuel Lerman - 1995 - Bulletin of Symbolic Logic 1 (2):189-201.
    The degrees of unsolvability were introduced in the ground-breaking papers of Post [20] and Kleene and Post [7] as an attempt to measure theinformation contentof sets of natural numbers. Kleene and Post were interested in the relative complexity of decision problems arising naturally in mathematics; in particular, they wished to know when a solution to one decision problem contained the information necessary to solve a second decision problem. As decision problems can be coded by sets of natural numbers, this question (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  35.  23
    Word problems and ceers.Valentino Delle Rose, Luca San Mauro & Andrea Sorbi - 2020 - Mathematical Logic Quarterly 66 (3):341-354.
    This note addresses the issue as to which ceers can be realized by word problems of computably enumerable (or, simply, c.e.) structures (such as c.e. semigroups, groups, and rings), where being realized means to fall in the same reducibility degree (under the notion of reducibility for equivalence relations usually called “computable reducibility”), or in the same isomorphism type (with the isomorphism induced by a computable function), or in the same strong isomorphism type (with the isomorphism induced by (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  12
    Degree Spectra of Analytic Complete Equivalence Relations.Dino Rossegger - 2022 - Journal of Symbolic Logic 87 (4):1663-1676.
    We study the bi-embeddability and elementary bi-embeddability relation on graphs under Borel reducibility and investigate the degree spectra realized by these relations. We first give a Borel reduction from embeddability on graphs to elementary embeddability on graphs. As a consequence we obtain that elementary bi-embeddability on graphs is a $\boldsymbol {\Sigma }^1_1$ complete equivalence relation. We then investigate the algorithmic properties of this reduction. We obtain that elementary bi-embeddability on the class of computable graphs is $\Sigma ^1_1$ (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  33
    Primitive recursive equivalence relations and their primitive recursive complexity.Luca San Mauro, Nikolay Bazhenov, Keng Meng Ng & Andrea Sorbi - forthcoming - Computability.
    The complexity of equivalence relations has received much attention in the recent literature. The main tool for such endeavour is the following reducibility: given equivalence relations R and S on natural numbers, R is computably reducible to S if there is a computable function f:ω→ω that induces an injective map from R-equivalence classes to S-equivalence classes. In order to compare the complexity of equivalence relations which are computable, researchers considered also feasible variants of computable (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  38.  29
    On diagonal functions for equivalence relations.Serikzhan A. Badaev, Nikolay A. Bazhenov, Birzhan S. Kalmurzayev & Manat Mustafa - 2023 - Archive for Mathematical Logic 63 (3):259-278.
    We work with weakly precomplete equivalence relations introduced by Badaev. The weak precompleteness is a natural notion inspired by various fixed point theorems in computability theory. Let E be an equivalence relation on the set of natural numbers $$\omega $$, having at least two classes. A total function f is a diagonal function for E if for every x, the numbers x and f(x) are not E-equivalent. It is known that in the case of c.e. relations E, (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39.  48
    On orbits, of prompt and low computably enumerable sets.Kevin Wald - 2002 - Journal of Symbolic Logic 67 (2):649-678.
    This paper concerns automorphisms of the computably enumerable sets. We prove two results relating semilow sets and prompt degrees via automorphisms, one of which is complementary to a recent result of Downey and Harrington. We also show that the property of effective simplicity is not invariant under automorphism, and that in fact every promptly simple set is automorphic to an effectively simple set. A major technique used in these proofs is a modification of the Harrington-Soare version of the (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40.  51
    Modal Definability: Two Commuting Equivalence Relations.Yana Rumenova & Tinko Tinchev - 2022 - Logica Universalis 16 (1):177-194.
    We prove that modal definability with respect to the class of all structures with two commuting equivalence relations is an undecidable problem. The construction used in the proof shows that the same is true for the subclass of all finite structures. For that reason we prove that the first-order theories of these classes are undecidable and reduce the latter problem to the former.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  58
    Elementary differences between the degrees of unsolvability and degrees of compressibility.George Barmpalias - 2010 - Annals of Pure and Applied Logic 161 (7):923-934.
    Given two infinite binary sequences A,B we say that B can compress at least as well as A if the prefix-free Kolmogorov complexity relative to B of any binary string is at most as much as the prefix-free Kolmogorov complexity relative to A, modulo a constant. This relation, introduced in Nies [14] and denoted by A≤LKB, is a measure of relative compressing power of oracles, in the same way that Turing reducibility is a measure of relative information. The (...) classes induced by ≤LK are called LK degrees and there is a least degree containing the oracles which can only compress as much as a computable oracle, also called the ‘low for K’ sets. A well-known result from Nies [14] states that these coincide with the K-trivial sets, which are the ones whose initial segments have minimal prefix-free Kolmogorov complexity. We show that with respect to ≤LK, given any non-trivial sets X,Y there is a computably enumerable set A which is not K-trivial and it is below X,Y. This shows that the local structures of and Turing degrees are not elementarily equivalent to the corresponding local structures in the LK degrees. It also shows that there is no pair of sets computable from the halting problem which forms a minimal pair in the LK degrees; this is sharp in terms of the jump, as it is known that there are sets computable from which form a minimal pair in the LK degrees. We also show that the structure of LK degrees below the LK degree of the halting problem is not elementarily equivalent to the or structures of LK degrees. The proofs introduce a new technique of permitting below a set that is not K-trivial, which is likely to have wider applications. (shrink)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  42.  70
    An Exactification of the Monoid of Primitive Recursive Functions.Joachim Lambek & Philip Scott - 2005 - Studia Logica 81 (1):1-18.
    We study the monoid of primitive recursive functions and investigate a onestep construction of a kind of exact completion, which resembles that of the familiar category of modest sets, except that the partial equivalence relations which serve as objects are recursively enumerable. As usual, these constructions involve the splitting of symmetric idempotents.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  43. Witold A. Pogorzelski, Piotr Wojtylak/Cn-Defini-tions of Propositional Connectives 1 Su Gao, Peter Gerdes/Computably Enumerable Equiva-lence Relations 27 Yoshihito Tanaka/Model Existence in Non-compact Modal. [REVIEW]Mary-Anne Williams, Thomas Meyer, Basic Infobase Change, David Billington & Andrew Rock - 2001 - Studia Logica 67:439-440.
  44.  59
    Graphs realised by r.e. equivalence relations.Alexander Gavruskin, Sanjay Jain, Bakhadyr Khoussainov & Frank Stephan - 2014 - Annals of Pure and Applied Logic 165 (7-8):1263-1290.
    We investigate dependence of recursively enumerable graphs on the equality relation given by a specific r.e. equivalence relation on ω. In particular we compare r.e. equivalence relations in terms of graphs they permit to represent. This defines partially ordered sets that depend on classes of graphs under consideration. We investigate some algebraic properties of these partially ordered sets. For instance, we show that some of these partial ordered sets possess atoms, minimal and maximal elements. We (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  45.  48
    The complexity of hybrid logics over equivalence relations.Martin Mundhenk & Thomas Schneider - 2009 - Journal of Logic, Language and Information 18 (4):493-514.
    This paper examines and classifies the computational complexity of model checking and satisfiability for hybrid logics over frames with equivalence relations. The considered languages contain all possible combinations of the downarrow binder, the existential binder, the satisfaction operator, and the global modality, ranging from the minimal hybrid language to very expressive languages. For model checking, we separate polynomial-time solvable from PSPACE-complete cases, and for satisfiability, we exhibit cases complete for NP, PS pace , NE xp T ime , and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  46.  24
    Using almost-everywhere theorems from analysis to study randomness.Kenshi Miyabe, André Nies & Jing Zhang - 2016 - Bulletin of Symbolic Logic 22 (3):305-331.
    We study algorithmic randomness notions via effective versions of almost-everywhere theorems from analysis and ergodic theory. The effectivization is in terms of objects described by a computably enumerable set, such as lower semicomputable functions. The corresponding randomness notions are slightly stronger than Martin–Löf randomness.We establish several equivalences. Given a ML-random realz, the additional randomness strengths needed for the following are equivalent.all effectively closed classes containingzhave density 1 atz.all nondecreasing functions with uniformly left-c.e. increments are differentiable atz.zis a Lebesgue (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  47.  51
    Computable isomorphisms, degree spectra of relations, and Scott families.Bakhadyr Khoussainov & Richard A. Shore - 1998 - Annals of Pure and Applied Logic 93 (1-3):153-193.
    The spectrum of a relation on a computable structure is the set of Turing degrees of the image of R under all isomorphisms between and any other computable structure . The relation is intrinsically computably enumerable if its image under all such isomorphisms is c.e. We prove that any computable partially ordered set is isomorphic to the spectrum of an intrinsically c.e. relation on a computable structure. Moreover, the isomorphism can be constructed in such a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  48.  36
    Computing the complexity of the relation of isometry between separable Banach spaces.Julien Melleray - 2007 - Mathematical Logic Quarterly 53 (2):128-131.
    We compute here the Borel complexity of the relation of isometry between separable Banach spaces, using results of Gao, Kechris [2], Mayer-Wolf [5], and Weaver [8]. We show that this relation is Borel bireducible to the universal relation for Borel actions of Polish groups. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  49.  58
    On definability of the equality in classes of algebras with an equivalence relation.Pilar Dellunde I. Clavé - 2000 - Studia Logica 64 (3):345-353.
    We present a finitary regularly algebraizable logic not finitely equivalential, for every similarity type. We associate to each of these logics a class of algebras with an equivalence relation, with the property that in this class, the identity is atomatically definable but not finitely atomatically definable.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50.  73
    Enumerations in computable structure theory.Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles McCoy, Russell Miller & Reed Solomon - 2005 - Annals of Pure and Applied Logic 136 (3):219-246.
    We exploit properties of certain directed graphs, obtained from the families of sets with special effective enumeration properties, to generalize several results in computable model theory to higher levels of the hyperarithmetical hierarchy. Families of sets with such enumeration features were previously built by Selivanov, Goncharov, and Wehner. For a computable successor ordinal α, we transform a countable directed graph into a structure such that has a isomorphic copy if and only if has a computable isomorphic copy.A computable structure is (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   19 citations  
1 — 50 / 982