Abstract
Schur’s Lemma says that the endomorphism ring of a simple left R-module is a division ring. It plays a fundamental role to prove classical ring structure theorems like the Jacobson Density Theorem and the Wedderburn–Artin Theorem. We first define the endomorphism ring of simple left R-modules by their Π10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
Π10\end{document} subsets and show that Schur’s Lemma is provable in RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
RCA0\end{document}. A ring R is left primitive if there is a faithful simple left R-module and left semisimple if the left regular module RR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}
RR\end{document} is semisimple. The Jacobson Density Theorem and the Wedderburn-Artin Theorem characterize left primitive ring and left semisimple ring, respectively. We then study such theorems from the standpoint of reverse mathematics.