Order:
  1.  31
    Natural Density and the Quantifier “Most”.Selçuk Topal & Ahmet Çevik - 2020 - Journal of Logic, Language and Information 29 (4):511-523.
    This paper proposes a formalization of the class of sentences quantified by most, which is also interpreted as proportion of or majority of depending on the domain of discourse. We consider sentences of the form “Most A are B”, where A and B are plural nouns and the interpretations of A and B are infinite subsets of \. There are two widely used semantics for Most A are B: \ > C \) and \ > \dfrac{C}{2} \), where C denotes (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  33
    Hierarchical Multiverse of Sets.Ahmet Çevik - 2023 - Notre Dame Journal of Formal Logic 64 (4):545-570.
    In this article, I develop a novel version of the multiverse theory of sets called hierarchical pluralism by introducing the notion of “degrees of intentionality” of theories. The presented view is articulated for the purpose of reconciling epistemological realism and the multiverse theory of sets so as to preserve a considerable amount of epistemic objectivity when working with the multiverse theory. I give some arguments in favor of a hierarchical picture of the multiverse in which theories or models are thought (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  25
    Choice classes.Ahmet Çevik - 2016 - Mathematical Logic Quarterly 62 (6):563-574.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  38
    On the Cardinality of Future Worldlines in Discrete Spacetime Structures.Zeki Seskir & Ahmet Çevik - 2023 - Foundations of Physics 53 (3):1-18.
    We give an analysis over a variation of causal sets where the light cone of an event is represented by finitely branching trees with respect to any given arbitrary dynamics. We argue through basic topological properties of Cantor space that under certain assumptions about the universe, spacetime structure and causation, given any event x, the number of all possible future worldlines of x within the many-worlds interpretation is uncountable. However, if all worldlines extending the event x are ‘eventually deterministic’, then (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  58
    Most-intersection of countable sets.Ahmet Çevik & Selçuk Topal - 2021 - Journal of Applied Non-Classical Logics 31 (3-4):343-354.
    We introduce a novel set-intersection operator called ‘most-intersection’ based on the logical quantifier ‘most’, via natural density of countable sets, to be used in determining the majority chara...
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  6.  17
    An effectively closed set with no join property.Ahmet Çevik - 2021 - Mathematical Logic Quarterly 67 (3):313-320.
    In this paper, we establish a relationship between the join property and Turing degrees of members of effectively closed sets in Cantor space, i.e., classes. We first give a proof of the observation that there exists a non‐empty special class in which no join of two members computes the halting set. We then prove the existence of a non‐empty special class such that no member satisfies the join property, where a degree satisfies the join property if for all non‐zero there (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  16
    Bilimsel Modellerin Sağlamlığı Üzerine.Ahmet Çevik - 2021 - Felsefe Arkivi 55:49-65.
    Sağlamlık analizi (robustness analysis), çok sayıda birbirinden bağımsız prosedür aracılığıyla aynı sonucun elde edilmeye çalışıldığı epistemik bir stratejidir. Söz konusu strateji bilim pratiğinde açıklama verme ve öndeyi türetiminde başvurulan modellerde sıklıkla kullanılır. Bilimsel modellerin ne derece sağlam ve hassas olduğunun belirlenmesi ile ilgili bir yöntem olduğu için sağlamlık analizi hem bilim insanları hem de bilim felsefecileri açısından epistemik bir öneme sahiptir. Bu makalede öncelikle, sağlamlık analizleri tarihsel çerçevede ele alınmaktadır. Ardından literatürde yer alan farklı sağlamlık analizi sınıflandırmaları ve sağlamlık analizlerinin (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  45
    ω-Circularity of Yablo's Paradox.Ahmet Çevik - 2020 - Logic and Logical Philosophy 29 (3):325-333.
    In this paper, we strengthen Hardy’s [1995] and Ketland’s [2005] arguments on the issues surrounding the self-referential nature of Yablo’s paradox [1993]. We first begin by observing that Priest’s [1997] construction of the binary satisfaction relation in revealing a fixed point relies on impredicative definitions. We then show that Yablo’s paradox is ‘ω-circular’, based on ω-inconsistent theories, by arguing that the paradox is not self-referential in the classical sense but rather admits circularity at the least transfinite countable ordinal. Hence, we (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  33
    Antibasis theorems for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Π10{\Pi^0_1}\end{document} classes and the jump hierarchy. [REVIEW]Ahmet Çevik - 2013 - Archive for Mathematical Logic 52 (1-2):137-142.
    We prove two antibasis theorems for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Π10{\Pi^0_1}\end{document} classes. The first is a jump inversion theorem for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Π10{\Pi^0_1}\end{document} classes with respect to the global structure of the Turing degrees. For any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}P2ω{P\subseteq 2^\omega}\end{document}, define S(P), the degree spectrum of P, to be the set of all Turing degrees a such that there exists \documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations