Limit computable integer parts

Archive for Mathematical Logic 50 (7-8):681-695 (2011)
  Copy   BIBTEX

Abstract

Let R be a real closed field. An integer part I for R is a discretely ordered subring such that for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}rR{r \in R}\end{document}, there exists an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}iI{i \in I}\end{document} so that i ≤ r < i + 1. Mourgues and Ressayre (J Symb Logic 58:641–647, 1993) showed that every real closed field has an integer part. The procedure of Mourgues and Ressayre appears to be quite complicated. We would like to know whether there is a simple procedure, yielding an integer part that is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Δ20(R){\Delta^0_2(R)}\end{document} —limit computable relative to R. We show that there is a maximal Z-ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}IR{I \subseteq R}\end{document} which is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Δ20(R){\Delta^0_2(R)}\end{document}. However, this I may not be an integer part for R. By a result of Wilkie (Logic Colloquium ’77), any Z-ring can be extended to an integer part for some real closed field. Using Wilkie’s ideas, we produce a real closed field R with a Z-ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}IR{I \subseteq R}\end{document} such that I does not extend to an integer part for R. For a computable real closed field, we do not know whether there must be an integer part in the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Δ20{\Delta^0_2}\end{document}. We know that certain subclasses of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Δ20{\Delta^0_2}\end{document} are not sufficient. We show that for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}nω{n \in \omega}\end{document}, there is a computable real closed field with no n-c.e. integer part. In fact, there is a computable real closed field with no n-c.e. integer part for any n.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 102,440

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

A remark on hereditarily nonparadoxical sets.Péter Komjáth - 2016 - Archive for Mathematical Logic 55 (1-2):165-175.
Coherent trees that are not Countryman.Yinhe Peng - 2017 - Archive for Mathematical Logic 56 (3-4):237-251.
Square principles with tail-end agreement.William Chen & Itay Neeman - 2015 - Archive for Mathematical Logic 54 (3-4):439-452.

Analytics

Added to PP
2013-10-27

Downloads
83 (#257,431)

6 months
10 (#374,086)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Erratum to: Limit computable integer parts.Paola D’Aquino, Julia Knight & Karen Lange - 2015 - Archive for Mathematical Logic 54 (3-4):487-489.

Add more citations

References found in this work

Computable structures and the hyperarithmetical hierarchy.C. J. Ash - 2000 - New York: Elsevier. Edited by J. Knight.
A Decision Method for Elementary Algebra and Geometry.Alfred Tarski - 1952 - Journal of Symbolic Logic 17 (3):207-207.
Every real closed field has an integer part.M. H. Mourgues & J. P. Ressayre - 1993 - Journal of Symbolic Logic 58 (2):641-647.

View all 7 references / Add more references