Abstract
This paper presents an approach for monitoring exercises of hand rehabilitation for post stroke patients. The developed solution uses a leap motion controller as hand-tracking device and embeds a supervised machine learning. The K-nearest neighbor methodology is adopted for automatically characterizing the physiotherapist or helper hand movement resulting a unique movement pattern that constitutes the basis of the rehabilitation process. In the second stage, an evaluation of the patients rehabilitation exercises results is compared to the movement pattern of the patient and results are presented, saved and statistically analyzed. Physicians and physiotherapists monitor and assess patients’ rehabilitation improvements through a web application, furthermore, offer medical assisted rehabilitation processes through low cost technology, which can be easily exploited at home. Recorded tracked motion data and results can be used for further medical study and evaluating rehabilitation trends according to patient’s rehabilitation practice and improvement.