Abstract
This paper is a continuation of investigations on Galois connections from [1], [3], [10]. It is a continuation of [2]. We have shown many results that link properties of a given closure space with that of the dual space. For example: for every -disjunctive closure space X the dual closure space is topological iff the base of X generated by this dual space consists of the -prime sets in X (Theorem 2). Moreover the characterizations of the satisfiability relation for classical logic are shown. Roughly speaking our main result here is the following: a satisfiability relation in a logic L with, a countable language is a fragment of the classical one iff the compactness theorem for L holds (Theorems 3–8).