Abstract
Under the assumption that δ is a Woodin cardinal and GCH holds, I show that if F is any class function from the regular cardinals to the cardinals such that (1) ${\kappa < {\rm cf}(F(\kappa))}$ , (2) ${\kappa < \lambda}$ implies ${F(\kappa) \leq F(\lambda)}$ , and (3) δ is closed under F, then there is a cofinality-preserving forcing extension in which 2 γ = F(γ) for each regular cardinal γ < δ, and in which δ remains Woodin. Unlike the analogous results for supercompact cardinals [Menas in Trans Am Math Soc 223:61–91, (1976)] and strong cardinals [Friedman and Honzik in Ann Pure Appl Logic 154(3):191–208, (2008)], there is no requirement that the function F be locally definable. I deduce a global version of the above result: Assuming GCH, if F is a function satisfying (1) and (2) above, and C is a class of Woodin cardinals, each of which is closed under F, then there is a cofinality-preserving forcing extension in which 2 γ = F(γ) for all regular cardinals γ and each cardinal in C remains Woodin