An Easton like theorem in the presence of Shelah cardinals

Archive for Mathematical Logic 56 (3-4):273-287 (2017)
  Copy   BIBTEX

Abstract

We show that Shelah cardinals are preserved under the canonical GCH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{GCH}}}$$\end{document} forcing notion. We also show that if GCH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{GCH}}}$$\end{document} holds and F:REG→CARD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:{{\mathrm{REG}}}\rightarrow {{\mathrm{CARD}}}$$\end{document} is an Easton function which satisfies some weak properties, then there exists a cofinality preserving generic extension of the universe which preserves Shelah cardinals and satisfies ∀κ∈REG,2κ=F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall \kappa \in {{\mathrm{REG}}},~ 2^{\kappa }=F$$\end{document}. This gives a partial answer to a question asked by Cody :569–591, 2013) and independently by Honzik. We also prove an indestructibility result for Shelah cardinals.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,505

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
Σ1-wellorders without collapsing.Peter Holy - 2015 - Archive for Mathematical Logic 54 (3-4):453-462.
Cofinality of the laver ideal.Miroslav Repický - 2016 - Archive for Mathematical Logic 55 (7-8):1025-1036.

Analytics

Added to PP
2017-11-06

Downloads
8 (#1,582,940)

6 months
3 (#1,475,474)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations

References found in this work

Easton’s theorem and large cardinals.Sy-David Friedman & Radek Honzik - 2008 - Annals of Pure and Applied Logic 154 (3):191-208.
Easton’s theorem in the presence of Woodin cardinals.Brent Cody - 2013 - Archive for Mathematical Logic 52 (5-6):569-591.
Witnessing numbers of Shelah Cardinals.Toshio Suzuki - 1993 - Mathematical Logic Quarterly 39 (1):62-66.

Add more references