Abstract
We show that Shelah cardinals are preserved under the canonical GCH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{GCH}}}$$\end{document} forcing notion. We also show that if GCH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{GCH}}}$$\end{document} holds and F:REG→CARD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:{{\mathrm{REG}}}\rightarrow {{\mathrm{CARD}}}$$\end{document} is an Easton function which satisfies some weak properties, then there exists a cofinality preserving generic extension of the universe which preserves Shelah cardinals and satisfies ∀κ∈REG,2κ=F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall \kappa \in {{\mathrm{REG}}},~ 2^{\kappa }=F$$\end{document}. This gives a partial answer to a question asked by Cody :569–591, 2013) and independently by Honzik. We also prove an indestructibility result for Shelah cardinals.