This category needs an editor. We encourage you to help if you are qualified.
Volunteer, or read more about what this involves.
Related

Contents
34 found
Order:
  1. On Deductionism.Dan Bruiger - manuscript
    Deductionism assimilates nature to conceptual artifacts (models, equations), and tacitly holds that real physical systems are such artifacts. Some physical concepts represent properties of deductive systems rather than of nature. Properties of mathematical or deductive systems can thereby sometimes falsely be ascribed to natural systems.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2. Meaning, Presuppositions, Truth-relevance, Gödel's Sentence and the Liar Paradox.X. Y. Newberry - manuscript
    Section 1 reviews Strawson’s logic of presuppositions. Strawson’s justification is critiqued and a new justification proposed. Section 2 extends the logic of presuppositions to cases when the subject class is necessarily empty, such as (x)((Px & ~Px) → Qx) . The strong similarity of the resulting logic with Richard Diaz’s truth-relevant logic is pointed out. Section 3 further extends the logic of presuppositions to sentences with many variables, and a certain valuation is proposed. It is noted that, given this valuation, (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  3. Minimal Type Theory (MTT).P. Olcott - manuscript
    Minimal Type Theory (MTT) is based on type theory in that it is agnostic about Predicate Logic level and expressly disallows the evaluation of incompatible types. It is called Minimal because it has the fewest possible number of fundamental types, and has all of its syntax expressed entirely as the connections in a directed acyclic graph.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  4. Mathematical Analysis and Analytical Science.C. A. Jimenez - forthcoming - Boston Studies in the Philosophy of Science.
  5. Arithmetical Pluralism and the Objectivity of Syntax.Lavinia Picollo & Daniel Waxman - forthcoming - Noûs.
    Arithmetical pluralism is the view that there is not one true arithmetic but rather many apparently conflicting arithmetical theories, each true in its own language. While pluralism has recently attracted considerable interest, it has also faced significant criticism. One powerful objection, which can be extracted from Parsons (2008), appeals to a categoricity result to argue against the possibility of seemingly conflicting true arithmetics. Another salient objection raised by Putnam (1994) and Koellner (2009) draws upon the arithmetization of syntax to argue (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  6. Analyticity and Syntheticity in Type Theory Revisited.Bruno Bentzen - 2024 - Review of Symbolic Logic 17 (4).
    I discuss problems with Martin-Löf's distinction between analytic and synthetic judgments in constructive type theory and propose a revision of his views. I maintain that a judgment is analytic when its correctness follows exclusively from the evaluation of the expressions occurring in it. I argue that Martin-Löf's claim that all judgments of the forms a : A and a = b : A are analytic is unfounded. As I shall show, when A evaluates to a dependent function type (x : (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7. The Neo-Expressionist Mathematica.Alexej Savreux - 2024 - Philadelphia, PA: Write Brain Publishing.
    Alexej Savreux's "The Neo-Expressionist Mathematica" is a 10-year in-the-making multi-genre collection of previously unpublished bohemian and academic papers, notes, and essays contemplating and deliberating mathematics, outsider art, art theory, linguistics, literary criticism, futurism, sociology, technology, and philosophy-related material. This assortment includes ideas and asides on supercomputers and software interfaces to old-school hacking ethos, logic and geometry, the art market, recreational mathematics, codes and ciphers, and cosmology. A variety of professionals, collaborators, organizations, and grants made this work possible, including colleagues at (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  8. Carnap and Beth on the Limits of Tolerance.Benjamin Marschall - 2021 - Canadian Journal of Philosophy 51 (4):282–300.
    Rudolf Carnap’s principle of tolerance states that there is no need to justify the adoption of a logic by philosophical means. Carnap uses the freedom provided by this principle in his philosophy of mathematics: he wants to capture the idea that mathematical truth is a matter of linguistic rules by relying on a strong metalanguage with infinitary inference rules. In this paper, I give a new interpretation of an argument by E. W. Beth, which shows that the principle of tolerance (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  9. From metasemantics to analyticity.Zeynep Soysal - 2020 - Philosophy and Phenomenological Research 103 (1):57-76.
    In this paper, I argue from a metasemantic principle to the existence of analytic sentences. According to the metasemantic principle, an external feature is relevant to determining which concept one expresses with an expression only if one is disposed to treat this feature as relevant. This entails that if one isn’t disposed to treat external features as relevant to determining which concept one expresses, and one still expresses a given concept, then something other than external features must determine that one (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  10. Remarks on Wittgenstein, Gödel, Chaitin, Incompleteness, Impossiblity and the Psychological Basis of Science and Mathematics.Michael Richard Starks - 2019 - In Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal. Reality Press. pp. 24-38.
    It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than as (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  11. Is Hume’s Principle analytic?Eamon Darnell & Aaron Thomas-Bolduc - 2018 - Synthese 198 (1):169-185.
    The question of the analyticity of Hume’s Principle (HP) is central to the neo-logicist project. We take on this question with respect to Frege’s definition of analyticity, which entails that a sentence cannot be analytic if it can be consistently denied within the sphere of a special science. We show that HP can be denied within non-standard analysis and argue that if HP is taken to depend on Frege’s definition of number, it isn’t analytic, and if HP is taken to (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Formal analyticity.Zeynep Soysal - 2018 - Philosophical Studies 175 (11):2791-2811.
    In this paper, I introduce and defend a notion of analyticity for formal languages. I first uncover a crucial flaw in Timothy Williamson’s famous argument template against analyticity, when it is applied to sentences of formal mathematical languages. Williamson’s argument targets the popular idea that a necessary condition for analyticity is that whoever understands an analytic sentence assents to it. Williamson argues that for any given candidate analytic sentence, there can be people who understand that sentence and yet who fail (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  13. New Perspectives on the Philosophy of Paul Benacerraf: Truth, Objects, Infinity (Fabrice Pataut, Editor).Fabrice Pataut Jody Azzouni, Paul Benacerraf Justin Clarke-Doane, Jacques Dubucs Sébastien Gandon, Brice Halimi Jon Perez Laraudogoitia, Mary Leng Ana Leon-Mejia, Antonio Leon-Sanchez Marco Panza, Fabrice Pataut Philippe de Rouilhan & Andrea Sereni Stuart Shapiro - 2017 - Springer.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  14. Is Geometry Analytic?David Mwakima - 2017 - Dianoia 1 (4):66 - 78.
    In this paper I present critical evaluations of Ayer and Putnam's views on the analyticity of geometry. By drawing on the historico-philosophical work of Michael Friedman on the relativized apriori; and Roberto Torretti on the foundations of geometry, I show how we can make sense of the assertion that pure geometry is analytic in Carnap's sense.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15. Two Criticisms against Mathematical Realism.Seungbae Park - 2017 - Diametros 52:96-106.
    Mathematical realism asserts that mathematical objects exist in the abstract world, and that a mathematical sentence is true or false, depending on whether the abstract world is as the mathematical sentence says it is. I raise two objections against mathematical realism. First, the abstract world is queer in that it allows for contradictory states of affairs. Second, mathematical realism does not have a theoretical resource to explain why a sentence about a tricle is true or false. A tricle is an (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  16. A case study of misconceptions students in the learning of mathematics; The concept limit function in high school.Widodo Winarso & Toheri Toheri - 2017 - Jurnal Riset Pendidikan Matematika 4 (1): 120-127.
    This study aims to find out how high the level and trends of student misconceptions experienced by high school students in Indonesia. The subject of research that is a class XI student of Natural Science (IPA) SMA Negeri 1 Anjatan with the subject matter limit function. Forms of research used in this study is a qualitative research, with a strategy that is descriptive qualitative research. The data analysis focused on the results of the students' answers on the test essay subject (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  17. Against Mathematical Convenientism.Seungbae Park - 2016 - Axiomathes 26 (2):115-122.
    Indispensablists argue that when our belief system conflicts with our experiences, we can negate a mathematical belief but we do not because if we do, we would have to make an excessive revision of our belief system. Thus, we retain a mathematical belief not because we have good evidence for it but because it is convenient to do so. I call this view ‘ mathematical convenientism.’ I argue that mathematical convenientism commits the consequential fallacy and that it demolishes the Quine-Putnam (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18. In Carnap’s Defense: A survey on the concept of a linguistic framework in Carnap’s philosophy.Parzhad Torfehnezhad - 2016 - Abstracta 9 (1):03-30.
    The main task in this paper is to detail and investigate Carnap’s conception of a “linguistic framework”. On this basis, we will see whether Carnap’s dichotomies, such as the analytic-synthetic distinction, are to be construed as absolute/fundamental dichotomies or merely as relative dichotomies. I argue for a novel interpretation of Carnap’s conception of a LF and, on that basis, will show that, according to Carnap, all the dichotomies to be discussed are relative dichotomies; they depend on conventional decisions concerning the (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Thinking Analysis to the Process of Mathematical Creativity of Mathematicians.Zhang Xiao Gui - 2013 - Philosophy of Mathematics Education Journal 27.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  20. On the Quinean-analyticity of mathematical propositions.Gregory Lavers - 2012 - Philosophical Studies 159 (2):299-319.
    This paper investigates the relation between Carnap and Quine’s views on analyticity on the one hand, and their views on philosophical analysis or explication on the other. I argue that the stance each takes on what constitutes a successful explication largely dictates the view they take on analyticity. I show that although acknowledged by neither party (in fact Quine frequently expressed his agreement with Carnap on this subject) their views on explication are substantially different. I argue that this difference not (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  21. Russell on Logicism and Coherence.Conor Mayo-Wilson - 2011 - Russell: The Journal of Bertrand Russell Studies 31 (1):63-79.
    According to Quine, Charles Parsons, Mark Steiner, and others, Russell’s logicist project is important because, if successful, it would show that mathematical theorems possess desirable epistemic properties often attributed to logical theorems, such as aprioricity, necessity, and certainty. Unfortunately, Russell never attributed such importance to logicism, and such a thesis contradicts Russell’s explicitly stated views on the relationship between logic and mathematics. This raises the question: what did Russell understand to be the philosophical importance of logicism? Building on recent work (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Double vision: two questions about the neo-Fregean program.John MacFarlane - 2009 - Synthese 170 (3):443-456.
    Much of The Reason’s Proper Study is devoted to defending the claim that simply by stipulating an abstraction principle for the “number-of” functor, we can simultaneously fix a meaning for this functor and acquire epistemic entitlement to the stipulated principle. In this paper, I argue that the semantic and epistemological principles Hale and Wright offer in defense of this claim may be too strong for their purposes. For if these principles are correct, it is hard to see why they do (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  23. Mathematics, Models, and Modality: Selected Philosophical Essays.John P. Burgess - 2008 - Cambridge University Press.
    John Burgess is the author of a rich and creative body of work which seeks to defend classical logic and mathematics through counter-criticism of their nominalist, intuitionist, relevantist, and other critics. This selection of his essays, which spans twenty-five years, addresses key topics including nominalism, neo-logicism, intuitionism, modal logic, analyticity, and translation. An introduction sets the essays in context and offers a retrospective appraisal of their aims. The volume will be of interest to a wide range of readers across philosophy (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   7 citations  
  24. Carnap, gödel, and the analyticity of arithmetic.Neil Tennant - 2008 - Philosophia Mathematica 16 (1):100-112.
    Michael Friedman maintains that Carnap did not fully appreciate the impact of Gödel's first incompleteness theorem on the prospect for a purely syntactic definition of analyticity that would render arithmetic analytically true. This paper argues against this claim. It also challenges a common presumption on the part of defenders of Carnap, in their diagnosis of the force of Gödel's own critique of Carnap in his Gibbs Lecture. The author is grateful to Michael Friedman for valuable comments. Part of the research (...)
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  25. Dedekind’s Analysis of Number: Systems and Axioms.Wilfried Sieg & Dirk Schlimm - 2005 - Synthese 147 (1):121-170.
    Wilfred Sieg and Dirk Schlimm. Dedekind's Analysis of Number: Systems and Axioms.
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  26. The reason's proper study: essays towards a neo-Fregean philosophy of mathematics.Crispin Wright & Bob Hale - 2001 - Oxford: Clarendon Press. Edited by Crispin Wright.
    Here, Bob Hale and Crispin Wright assemble the key writings that lead to their distinctive neo-Fregean approach to the philosophy of mathematics. In addition to fourteen previously published papers, the volume features a new paper on the Julius Caesar problem; a substantial new introduction mapping out the program and the contributions made to it by the various papers; a section explaining which issues most require further attention; and bibliographies of references and further useful sources. It will be recognized as the (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   273 citations  
  27. The Making of Peacocks Treatise on Algebra: A Case of Creative Indecision.Menachem Fisch - 1999 - Archive for History of Exact Sciences 54 (2):137-179.
    A study of the making of George Peacock's highly influential, yet disturbingly split, 1830 account of algebra as an entanglement of two separate undertakings: arithmetical and symbolical or formal.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  28. Formal Concept Analysis: Mathematical Foundations.Bernhard Ganter & Rudolf Wille - 1999 - Springer.
    This first textbook on formal concept analysis gives a systematic presentation of the mathematical foundations and their relations to applications in computer science, especially in data analysis and knowledge processing. Above all, it presents graphical methods for representing conceptual systems that have proved themselves in communicating knowledge. The mathematical foundations are treated thoroughly and are illuminated by means of numerous examples, making the basic theory readily accessible in compact form.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   34 citations  
  29. Non-analytic conceptual knowledge.M. Giaquinto - 1996 - Mind 105 (418):249-268.
  30. L'analyse et la synthèse selon Ibn al-Haytham.Roshdi Rashed - 1991 - In Jules Vuillemin & Rushdī Rāshid (eds.), Mathématiques et philosophie de l'antiquité à l'age classique: hommage à Jules Vuillemin. Paris: Diffusion, Presses du CNRS.
  31. The syntheticity of time.Stephen R. Palmquist - 1989 - Philosophia Mathematica (2):233-235.
    In a recent article in this journal Phil. Math., II, v.4 (1989), n.2, pp.? ?] J. Fang argues that we must not be fooled by A.J. Ayer (God rest his soul!) and his cohorts into believing that mathematical knowledge has an analytic a priori status. Even computers, he reminds us, take some amount of time to perform their calculations. The simplicity of Kant's infamous example of a mathematical proposition (7+5=12) is "partly to blame" for "mislead[ing] scholars in the direction of (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Inwiefern sind die mathematischen sätze analytisch?Gerhard Frey - 1972 - Philosophia Mathematica (2):145-157.
    A SUMMARY IN ENGLISH [by Editor]The problem is to find out whether mathematical propositions are analytical, and if so, or if not, to what extent.Kant defined the analyticity in terms of Cartesian res extensa, exemplified by “A body is extended”, while he considered, because of such examples, mathematical propositions to be synthetic. The recent studies in set theory by Gödel, P.J.Cohen, etc., indicate, however, that such a proposition as the continuum hypothesis is certainly not “analytic (tautological)” in the strict sense (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  33. Analyticity and conceptual revision.Milton Fisk - 1966 - Journal of Philosophy 63 (20):627-637.
    The view that analytic propositions are those which are true in virtue of rules of use is basically correct. But there are many kinds of rules of use, and rules of some of these kinds do not generate truth. There is nothing like a grammatical analytic, though grammatical rules are rules of use. So, this rules-of-use view falls short of being an explanatory account. My problem is to find what it is that is special about those rules of use which (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Carnap and Quine on some analytic-synthetic distinctions.Lieven Decock - unknown
    I want to analyse the Quine-Carnap discussion on analyticity with regard to logical, mathematical and set-theoretical statements. In recent years, the renewed interest in Carnap’s work has shed a new light on the analytic-synthetic debate. If one fully appreciates Carnap’s conventionalism, one sees that there was not a metaphysical debate on whether there is an analytic-synthetic distinction, but rather a controversy on the expedience of drawing such a distinction. However, on this view, there can be no longer a single analytic-synthetic (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark