Results for 'constructive logic'

956 found
Order:
  1. Constructive Logic with Strong Negation is a Substructural Logic. I.Matthew Spinks & Robert Veroff - 2008 - Studia Logica 88 (3):325-348.
    The goal of this two-part series of papers is to show that constructive logic with strong negation N is definitionally equivalent to a certain axiomatic extension NFL ew of the substructural logic FL ew . In this paper, it is shown that the equivalent variety semantics of N (namely, the variety of Nelson algebras) and the equivalent variety semantics of NFL ew (namely, a certain variety of FL ew -algebras) are term equivalent. This answers a longstanding question (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  2.  48
    Constructive Logic and the Medvedev Lattice.Sebastiaan A. Terwijn - 2006 - Notre Dame Journal of Formal Logic 47 (1):73-82.
    We study the connection between factors of the Medvedev lattice and constructive logic. The algebraic properties of these factors determine logics lying in between intuitionistic propositional logic and the logic of the weak law of the excluded middle (also known as De Morgan, or Jankov, logic). We discuss the relation between the weak law of the excluded middle and the algebraic notion of join-reducibility. Finally we discuss autoreducible degrees.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  3.  48
    Constructive Logic is Connexive and Contradictory.Heinrich Wansing - forthcoming - Logic and Logical Philosophy:1-27.
    It is widely accepted that there is a clear sense in which the first-order paraconsistent constructive logic with strong negation of Almukdad and Nelson, QN4, is more constructive than intuitionistic first-order logic, QInt. While QInt and QN4 both possess the disjunction property and the existence property as characteristics of constructiveness (or constructivity), QInt lacks certain features of constructiveness enjoyed by QN4, namely the constructible falsity property and the dual of the existence property. This paper deals with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4. The basic constructive logic for a weak sense of consistency.Gemma Robles & José M. Méndez - 2008 - Journal of Logic, Language and Information 17 (1):89-107.
    In this paper, consistency is understood as the absence of the negation of a theorem, and not, in general, as the absence of any contradiction. We define the basic constructive logic BKc1 adequate to this sense of consistency in the ternary relational semantics without a set of designated points. Then we show how to define a series of logics extending BKc1 within the spectrum delimited by contractionless minimal intuitionistic logic. All logics defined in the paper are paraconsistent (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  5.  79
    Constructive Logic with Strong Negation is a Substructural Logic. II.M. Spinks & R. Veroff - 2008 - Studia Logica 89 (3):401-425.
    The goal of this two-part series of papers is to show that constructive logic with strong negation N is definitionally equivalent to a certain axiomatic extension NFL ew of the substructural logic FL ew. The main result of Part I of this series [41] shows that the equivalent variety semantics of N and the equivalent variety semantics of NFL ew are term equivalent. In this paper, the term equivalence result of Part I [41] is lifted to the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  6. Constructive logic, truth and warranted assertability.Greg Restall - 2001 - Philosophical Quarterly 51 (205):474-483.
    Shapiro and Taschek have argued that simply using intuitionistic logic and its Heyting semantics, one can show that there are no gaps in warranted assertability. That is, given that a discourse is faithfully modeled using Heyting's semantics for the logical constants, then if a statement _S is not warrantedly assertable, its negation (superscript box) _S is. Tennant has argued for this conclusion on similar grounds. I show that these arguments fail, albeit in illuminating ways. An appeal to constructive (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  42
    Structuring Co-constructive Logic for Proofs and Refutations.James Trafford - 2016 - Logica Universalis 10 (1):67-97.
    This paper considers a topos-theoretic structure for the interpretation of co-constructive logic for proofs and refutations following Trafford :22–40, 2015). It is notoriously tricky to define a proof-theoretic semantics for logics that adequately represent constructivity over proofs and refutations. By developing abstractions of elementary topoi, we consider an elementary topos as structure for proofs, and complement topos as structure for refutation. In doing so, it is possible to consider a dialogue structure between these topoi, and also control their (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  45
    The basic constructive logic for negation-consistency.Gemma Robles - 2008 - Journal of Logic, Language and Information 17 (2):161-181.
    In this paper, consistency is understood in the standard way, i.e. as the absence of a contradiction. The basic constructive logic BKc4, which is adequate to this sense of consistency in the ternary relational semantics without a set of designated points, is defined. Then, it is shown how to define a series of logics by extending BKc4 up to minimal intuitionistic logic. All logics defined in this paper are paraconsistent logics.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  9.  42
    Axiomatic extensions of the constructive logic with strong negation and the disjunction property.Andrzej Sendlewski - 1995 - Studia Logica 55 (3):377 - 388.
    We study axiomatic extensions of the propositional constructive logic with strong negation having the disjunction property in terms of corresponding to them varieties of Nelson algebras. Any such varietyV is characterized by the property: (PQWC) ifA,B V, thenA×B is a homomorphic image of some well-connected algebra ofV.We prove:• each varietyV of Nelson algebras with PQWC lies in the fibre –1(W) for some varietyW of Heyting algebras having PQWC, • for any varietyW of Heyting algebras with PQWC the least (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  10. (1 other version)Counting the maximal intermediate constructive logics.Mauro Ferrari & Pierangelo Miglioli - 1993 - Journal of Symbolic Logic 58 (4):1365-1401.
    A proof is given that the set of maximal intermediate propositional logics with the disjunction property and the set of maximal intermediate predicate logics with the disjunction property and the explicit definability property have the power of continuum. To prove our results, we introduce various notions which might be interesting by themselves. In particular, we illustrate a method to generate wide sets of pairwise "constructively incompatible constructive logics". We use a notion of "semiconstructive" logic and define wide sets (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  11.  26
    (1 other version)Topos based semantic for constructive logic with strong negation.Barbara Klunder & B. Klunder - 1992 - Mathematical Logic Quarterly 38 (1):509-519.
    The aim of the paper is to show that topoi are useful in the categorial analysis of the constructive logic with strong negation. In any topos ϵ we can distinguish an object Λ and its truth-arrows such that sets ϵ have a Nelson algebra structure. The object Λ is defined by the categorial counterpart of the algebraic FIDEL-VAKARELOV construction. Then it is possible to define the universal quantifier morphism which permits us to make the first order predicate calculus. (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  88
    Implicit epistemic aspects of constructive logic.Göran Sundholm - 1997 - Journal of Logic, Language and Information 6 (2):191-212.
    In the present paper I wish to regard constructivelogic as a self-contained system for the treatment ofepistemological issues; the explanations of theconstructivist logical notions are cast in anepistemological mold already from the outset. Thediscussion offered here intends to make explicit thisimplicit epistemic character of constructivism.Particular attention will be given to the intendedinterpretation laid down by Heyting. This interpretation, especially as refined in the type-theoretical work of Per Martin-Löf, puts thesystem on par with the early efforts of Frege andWhitehead-Russell. This quite (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  13.  56
    The basic constructive logic for absolute consistency.José M. Méndez & Gemma Robles - 2009 - Journal of Logic, Language and Information 18 (2):199-216.
    In this paper, consistency is understood as absolute consistency (i.e. non-triviality). The basic constructive logic BKc6, which is adequate to this sense of consistency in the ternary relational semantics without a set of designated points, is defined. Then, it is shown how to define a series of logics by extending BKc6 up to contractionless intuitionistic logic. All logics defined in this paper are paraconsistent logics.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  27
    A constructive logic behind the catch and throw mechanism.Hiroshi Nakano - 1994 - Annals of Pure and Applied Logic 69 (2-3):269-301.
  15.  99
    Curry's paradox in contractionless constructive logic.Akama Seiki - 1996 - Journal of Philosophical Logic 25 (2):135 - 150.
    We propose contractionless constructive logic which is obtained from Nelson's constructive logic by deleting contractions. We discuss the consistency of a naive set theory based on the proposed logic in relation to Curry's paradox. The philosophical significance of contractionless constructive logic is also argued in comparison with Fitch's and Prawitz's systems.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  16.  47
    Some results on intermediate constructive logics.Pierangelo Miglioli, Ugo Moscato, Mario Ornaghi, Silvia Quazza & Gabriele Usberti - 1989 - Notre Dame Journal of Formal Logic 30 (4):543-562.
  17. Section 2. Model Theory.Va Vardanyan, On Provability Resembling Computability, Proving Aa Voronkov & Constructive Logic - 1989 - In Jens Erik Fenstad, Ivan Timofeevich Frolov & Risto Hilpinen (eds.), Logic, methodology, and philosophy of science VIII: proceedings of the Eighth International Congress of Logic, Methodology, and Philosophy of Science, Moscow, 1987. New York, NY, U.S.A.: Sole distributors for the U.S.A. and Canada, Elsevier Science.
    No categories
     
    Export citation  
     
    Bookmark  
  18. Extensions of the basic constructive logic for weak consistency BKc1 defined with a falsity constant.Gemma Robles - 2007 - Logic and Logical Philosophy 16 (4):311-322.
    The logic BKc1 is the basic constructive logic for weak consistency in the ternary relational semantics without a set of designated points. In this paper, a number of extensions of B Kc1 defined with a propositional falsity constant are defined. It is also proved that weak consistency is not equivalent to negation-consistency or absolute consistency in any logic included in positive contractionless intermediate logic LC plus the constructive negation of BKc1 and the contraposition axioms.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  19.  48
    Gödel theorems for non-constructive logics.Barkley Rosser - 1937 - Journal of Symbolic Logic 2 (3):129-137.
  20.  23
    Decidable variables for constructive logics.Satoru Niki - 2020 - Mathematical Logic Quarterly 66 (4):484-493.
    Ishihara's problem of decidable variables asks which class of decidable propositional variables is sufficient to warrant classical theorems in intuitionistic logic. We present several refinements to the class proposed by Ishii for this problem, which also allows the class to cover Glivenko's logic. We also treat the extension of the problem to minimal logic, suggesting a couple of new classes.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21. On maximal intermediate predicate constructive logics.Alessandro Avellone, Camillo Fiorentini, Paolo Mantovani & Pierangelo Miglioli - 1996 - Studia Logica 57 (2-3):373 - 408.
    We extend to the predicate frame a previous characterization of the maximal intermediate propositional constructive logics. This provides a technique to get maximal intermediate predicate constructive logics starting from suitable sets of classically valid predicate formulae we call maximal nonstandard predicate constructive logics. As an example of this technique, we exhibit two maximal intermediate predicate constructive logics, yet leaving open the problem of stating whether the two logics are distinct. Further properties of these logics will be (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  17
    Sequential Modification of Constructive Logic Calculus for Normal Formulas without Structural Deduction Rules.R. A. Plyushkevychus - 1969 - In A. O. Slisenko (ed.), Studies in constructive mathematics and mathematical logic. New York,: Consultants Bureau. pp. 70--76.
  23.  29
    The basic constructive logic for weak consistency and the reductio axioms.Gemma Robles & José M. Méndez - 2009 - Bulletin of the Section of Logic 38 (1/2):61-76.
  24.  42
    A sequent calculus for constructive logic with strong negation as a substructural logic.George Metcalfe - 2009 - Bulletin of the Section of Logic 38 (1/2):1-7.
  25. Extensions of the basic constructive logic for negation-consistency BKc4.Gemma Robles - 2008 - Logique Et Analyse 51.
  26.  61
    Rasiowa H.. -lattices and constructive logic with strong negation. Fundamenta mathematicae, vol. 46 , pp. 61–80.David Nelson - 1969 - Journal of Symbolic Logic 34 (1):118-118.
  27.  51
    Choice principles and constructive logics.David Dedivi - 2004 - Philosophia Mathematica 12 (3):222-243.
    to constructive systems is significant for contemporary metaphysics. However, many are surprised by these results, having learned that the Axiom of Choice (AC) is constructively valid. Indeed, even among specialists there were, until recently, reasons for puzzlement-rival versions of Intuitionistic Type Theory, one where (AC) is valid, another where it implies classical logic. This paper accessibly explains the situation, puts the issues in a broader setting by considering other choice principles, and draws philosophical morals for the understanding of (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  28.  66
    Strong paraconsistency and the basic constructive logic for an even weaker sense of consistency.Gemma Robles & José M. Méndez - 2009 - Journal of Logic, Language and Information 18 (3):357-402.
    In a standard sense, consistency and paraconsistency are understood as the absence of any contradiction and as the absence of the ECQ (‘E contradictione quodlibet’) rule, respectively. The concepts of weak consistency (in two different senses) as well as that of F -consistency have been defined by the authors. The aim of this paper is (a) to define alternative (to the standard one) concepts of paraconsistency in respect of the aforementioned notions of weak consistency and F -consistency; (b) to define (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Refining Labelled Systems for Modal and Constructive Logics with Applications.Tim Lyon - 2021 - Dissertation, Technischen Universität Wien
    This thesis introduces the "method of structural refinement", which serves as a means of transforming the relational semantics of a modal and/or constructive logic into an 'economical' proof system by connecting two proof-theoretic paradigms: labelled and nested sequent calculi. The formalism of labelled sequents has been successful in that cut-free calculi in possession of desirable proof-theoretic properties can be automatically generated for large classes of logics. Despite these qualities, labelled systems make use of a complicated syntax that explicitly (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  30.  42
    (2 other versions)The basic constructive logic for negation-consistency defined with a propositional falsity constant.José M. Méndez, Gemma Robles & Francisco Salto - 2007 - Bulletin of the Section of Logic 36 (1-2):45-58.
  31.  50
    Some intuitions behind realizability semantics for constructive logic: Tableaux and Läuchli countermodels.James Lipton & Michael J. O'Donnell - 1996 - Annals of Pure and Applied Logic 81 (1-3):187-239.
    We use formal semantic analysis based on new constructions to study abstract realizability, introduced by Läuchli in 1970, and expose its algebraic content. We claim realizability so conceived generates semantics-based intuitive confidence that the Heyting Calculus is an appropriate system of deduction for constructive reasoning.Well-known semantic formalisms have been defined by Kripke and Beth, but these have no formal concepts corresponding to constructions, and shed little intuitive light on the meanings of formulae. In particular, the completeness proofs for these (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  51
    Notes on N-lattices and constructive logic with strong negation.D. Vakarelov - 1977 - Studia Logica 36 (1-2):109-125.
  33.  15
    No Group of Opposition for Constructive Logics: The Intuitionistic and Linear Cases.Baptiste Mélès - 2012 - In Jean-Yves Béziau & Dale Jacquette (eds.), Around and Beyond the Square of Opposition. New York: Springer Verlag. pp. 201--217.
  34.  50
    Łukasiewicz Negation and Many-Valued Extensions of Constructive Logics.Thomas Macaulay Ferguson - 2014 - In Proc. 44th International Symposium on Multiple-Valued Logic. IEEE Computer Society Press. pp. 121-127.
    This paper examines the relationships between the many-valued logics G~ and Gn~ of Esteva, Godo, Hajek, and Navara, i.e., Godel logic G enriched with Łukasiewicz negation, and neighbors of intuitionistic logic. The popular fragments of Rauszer's Heyting-Brouwer logic HB admit many-valued extensions similar to G which may likewise be enriched with Łukasiewicz negation; the fuzzy extensions of these logics, including HB, are equivalent to G ~, as are their n-valued extensions equivalent to Gn~ for any n ≥ (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  59
    A First Order Nonmonotonic Extension of Constructive Logic.David Pearce & Agustín Valverde - 2005 - Studia Logica 80 (2):321-346.
    Certain extensions of Nelson's constructive logic N with strong negation have recently become important in arti.cial intelligence and nonmonotonic reasoning, since they yield a logical foundation for answer set programming (ASP). In this paper we look at some extensions of Nelson's .rst-order logic as a basis for de.ning nonmonotonic inference relations that underlie the answer set programming semantics. The extensions we consider are those based on 2-element, here-and-there Kripke frames. In particular, we prove completeness for .rst-order here-and-there (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  36.  42
    Heyting-valued interpretations for Constructive Set Theory.Nicola Gambino - 2006 - Annals of Pure and Applied Logic 137 (1-3):164-188.
    We define and investigate Heyting-valued interpretations for Constructive Zermelo–Frankel set theory . These interpretations provide models for CZF that are analogous to Boolean-valued models for ZF and to Heyting-valued models for IZF. Heyting-valued interpretations are defined here using set-generated frames and formal topologies. As applications of Heyting-valued interpretations, we present a relative consistency result and an independence proof.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  37.  15
    Cross-Tradition Engagement in Philosophy: A Constructive-Engagement Account.Bo Mou - 2020 - New York: Routledge.
    This book presents a systematic unifying-pluralist account--a "constructive-engagement" account--of how cross-tradition engagement in philosophy is possible. The goal of this "constructive-engagement" account is, by way of reflective criticism, argumentation, and methodological guiding principles, to inquire into how distinct approaches from different philosophical traditions can talk to and learn from each other for the sake of making joint contributions to the contemporary development of philosophy. In Part I of the book, Bo Mou explores a range of fundamental theoretic and (...)
    No categories
  38.  33
    Constructive modal logics I.Duminda Wijesekera - 1990 - Annals of Pure and Applied Logic 50 (3):271-301.
    We often have to draw conclusions about states of machines in computer science and about states of knowledge and belief in artificial intelligence based on partial information. Nerode suggested using constructive logic as the language to express such deductions and also suggested designing appropriate intuitionistic Kripke frames to express the partial information. Following this program, Nerode and Wijesekera developed syntax, semantics and completeness for a system of intuitionistic dynamic logic for proving properties of concurrent programs. Like all (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  39.  75
    Aspects of general topology in constructive set theory.Peter Aczel - 2006 - Annals of Pure and Applied Logic 137 (1-3):3-29.
    Working in constructive set theory we formulate notions of constructive topological space and set-generated locale so as to get a good constructive general version of the classical Galois adjunction between topological spaces and locales. Our notion of constructive topological space allows for the space to have a class of points that need not be a set. Also our notion of locale allows the locale to have a class of elements that need not be a set. Class (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  40.  52
    Type theories, toposes and constructive set theory: predicative aspects of AST.Ieke Moerdijk & Erik Palmgren - 2002 - Annals of Pure and Applied Logic 114 (1-3):155-201.
    We introduce a predicative version of topos based on the notion of small maps in algebraic set theory, developed by Joyal and one of the authors. Examples of stratified pseudotoposes can be constructed in Martin-Löf type theory, which is a predicative theory. A stratified pseudotopos admits construction of the internal category of sheaves, which is again a stratified pseudotopos. We also show how to build models of Aczel-Myhill constructive set theory using this categorical structure.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  41.  30
    Constructive Functional Analysis.D. S. Bridges & Peter Zahn - 1982 - Journal of Symbolic Logic 47 (3):703-705.
  42.  81
    Brouwer's fan theorem and unique existence in constructive analysis.Josef Berger & Hajime Ishihara - 2005 - Mathematical Logic Quarterly 51 (4):360-364.
    Many existence propositions in constructive analysis are implied by the lesser limited principle of omniscience LLPO; sometimes one can even show equivalence. It was discovered recently that some existence propositions are equivalent to Bouwer's fan theorem FAN if one additionally assumes that there exists at most one object with the desired property. We are providing a list of conditions being equivalent to FAN, such as a unique version of weak König's lemma. This illuminates the relation between FAN and LLPO. (...)
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  43.  51
    Constructive Zermelo–Fraenkel set theory and the limited principle of omniscience.Michael Rathjen - 2014 - Annals of Pure and Applied Logic 165 (2):563-572.
    In recent years the question of whether adding the limited principle of omniscience, LPO, to constructive Zermelo–Fraenkel set theory, CZF, increases its strength has arisen several times. As the addition of excluded middle for atomic formulae to CZF results in a rather strong theory, i.e. much stronger than classical Zermelo set theory, it is not obvious that its augmentation by LPO would be proof-theoretically benign. The purpose of this paper is to show that CZF+RDC+LPO has indeed the same strength (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  44.  24
    Affine logic for constructive mathematics.Michael Shulman - 2022 - Bulletin of Symbolic Logic 28 (3):327-386.
    We show that numerous distinctive concepts of constructive mathematics arise automatically from an “antithesis” translation of affine logic into intuitionistic logic via a Chu/Dialectica construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness spaces. We also explain the constructive bifurcation of some classical concepts using the choice between multiplicative and additive affine connectives. Affine logic and the antithesis construction thus systematically “constructivize” classical definitions, handling the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  45.  7
    Games, Logic, and Constructive Sets.Grigori Mints & Reinhard Muskens (eds.) - 2003 - Center for the Study of Language and Inf.
    Mathematical game theory has been embraced by a variety of scholars: social scientists, biologists, linguists, and now, increasingly, logicians. This volume illustrates the recent advances of game theory in the field. Logicians benefit from things like game theory's ability to explain informational independence between connectives; meanwhile, game theorists have even begun to benefit from logical epistemic analyses of game states. In concert with such pioneering work, this volume also present surprising developments in classical fields, including first-order logic and set (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  46.  40
    The natural numbers in constructive set theory.Michael Rathjen - 2008 - Mathematical Logic Quarterly 54 (1):83-97.
    Constructive set theory started with Myhill's seminal 1975 article [8]. This paper will be concerned with axiomatizations of the natural numbers in constructive set theory discerned in [3], clarifying the deductive relationships between these axiomatizations and the strength of various weak constructive set theories.
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  47. The Bounds of Logic: A Generalized Viewpoint.Gila Sher - 1991 - MIT Press.
    The Bounds of Logic presents a new philosophical theory of the scope and nature of logic based on critical analysis of the principles underlying modern Tarskian logic and inspired by mathematical and linguistic development. Extracting central philosophical ideas from Tarski’s early work in semantics, Sher questions whether these are fully realized by the standard first-order system. The answer lays the foundation for a new, broader conception of logic. By generally characterizing logical terms, Sher establishes a fundamental (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   95 citations  
  48.  49
    On the Strength of some Semi-Constructive Theories.Solomon Feferman - 2012 - In Ulrich Berger, Hannes Diener, Peter Schuster & Monika Seisenberger (eds.), Logic, Construction, Computation. De Gruyter. pp. 201-226.
    Most axiomatizations of set theory that have been treated metamathematically have been based either entirely on classical logic or entirely on intuitionistic logic. But a natural conception of the settheoretic universe is as an indefinite (or “potential”) totality, to which intuitionistic logic is more appropriately applied, while each set is taken to be a definite (or “completed”) totality, for which classical logic is appropriate; so on that view, set theory should be axiomatized on some correspondingly mixed (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  49. (1 other version)Constructive set theory.John Myhill - 1975 - Journal of Symbolic Logic 40 (3):347-382.
  50. 1. Infon Logic Based On Constructive Logic.Seiki Akama - 2006 - Logique Et Analyse 49.
1 — 50 / 956