Results for 'axiomatizations of arithmetic of natural and integers numbers'

969 found
Order:
  1. On Certain Axiomatizations of Arithmetic of Natural and Integer Numbers.Urszula Wybraniec-Skardowska - 2019 - Axioms 2019 (Deductive Systems).
    The systems of arithmetic discussed in this work are non-elementary theories. In this paper, natural numbers are characterized axiomatically in two di erent ways. We begin by recalling the classical set P of axioms of Peano’s arithmetic of natural numbers proposed in 1889 (including such primitive notions as: set of natural numbers, zero, successor of natural number) and compare it with the set W of axioms of this arithmetic (including the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  2.  41
    Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of Cobham's and Semenov's theorems.Christian Michaux & Roger Villemaire - 1996 - Annals of Pure and Applied Logic 77 (3):251-277.
    Let be the set of nonnegative integers. We show the two following facts about Presburger's arithmetic:1. 1. Let . If L is not definable in , + then there is an definable in , such that there is no bound on the distance between two consecutive elements of L′. and2. 2. is definable in , + if and only if every subset of which is definable in is definable in , +. These two Theorems are of independent interest (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  3.  60
    On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation.Mojżesz Presburger & Dale Jabcquette - 1991 - History and Philosophy of Logic 12 (2):225-233.
    Presburger's essay on the completeness and decidability of arithmetic with integer addition but without multiplication is a milestone in the history of mathematical logic and formal metatheory. The proof is constructive, using Tarski-style quantifier elimination and a four-part recursive comprehension principle for axiomatic consequence characterization. Presburger's proof for the completeness of first order arithmetic with identity and addition but without multiplication, in light of the restrictive formal metatheorems of Gödel, Church, and Rosser, takes the foundations of arithmetic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  4. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  49
    Arithmetizations of Syllogistic à la Leibniz.Vladimir Sotirov - 1999 - Journal of Applied Non-Classical Logics 9 (2-3):387-405.
    ABSTRACT Two models of the Aristotelian syllogistic in arithmetic of natural numbers are built as realizations of an old Leibniz idea. In the interpretation, called Scholastic, terms are replaced by integers greater than 1, and s.Ap is translated as “s is a divisor of p”, sIp as “g.c.d. > 1”. In the interpretation, called Leibnizian, terms are replaced by proper divisors of a special “Universe number” u < 1, and sAp is translated as “s is divisible (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  6.  81
    On Interpretations of Arithmetic and Set Theory.Richard Kaye & Tin Lok Wong - 2007 - Notre Dame Journal of Formal Logic 48 (4):497-510.
    This paper starts by investigating Ackermann's interpretation of finite set theory in the natural numbers. We give a formal version of this interpretation from Peano arithmetic (PA) to Zermelo-Fraenkel set theory with the infinity axiom negated (ZF−inf) and provide an inverse interpretation going the other way. In particular, we emphasize the precise axiomatization of our set theory that is required and point out the necessity of the axiom of transitive containment or (equivalently) the axiom scheme of ∈-induction. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  7.  43
    On predicate provability logics and binumerations of fragments of Peano arithmetic.Taishi Kurahashi - 2013 - Archive for Mathematical Logic 52 (7-8):871-880.
    Solovay proved (Israel J Math 25(3–4):287–304, 1976) that the propositional provability logic of any ∑2-sound recursively enumerable extension of PA is characterized by the propositional modal logic GL. By contrast, Montagna proved in (Notre Dame J Form Log 25(2):179–189, 1984) that predicate provability logics of Peano arithmetic and Bernays–Gödel set theory are different. Moreover, Artemov proved in (Doklady Akademii Nauk SSSR 290(6):1289–1292, 1986) that the predicate provability logic of a theory essentially depends on the choice of a binumeration of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  8. The generative basis of natural number concepts.Alan M. Leslie, Rochel Gelman & C. R. Gallistel - 2008 - Trends in Cognitive Sciences 12 (6):213-218.
    Number concepts must support arithmetic inference. Using this principle, it can be argued that the integer concept of exactly ONE is a necessary part of the psychological foundations of number, as is the notion of the exact equality - that is, perfect substitutability. The inability to support reasoning involving exact equality is a shortcoming in current theories about the development of numerical reasoning. A simple innate basis for the natural number concepts can be proposed that embodies the (...) principle, supports exact equality and also enables computational compatibility with real- or rational-valued mental magnitudes. (shrink)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  9. Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  64
    Cognitive Foundations of Arithmetic: Evolution and Ontogenisis.Susan Carey - 2002 - Mind and Language 16 (1):37-55.
    Dehaene (this volume) articulates a naturalistic approach to the cognitive foundations of mathematics. Further, he argues that the ‘number line’ (analog magnitude) system of representation is the evolutionary and ontogenetic foundation of numerical concepts. Here I endorse Dehaene’s naturalistic stance and also his characterization of analog magnitude number representations. Although analog magnitude representations are part of the evolutionary foundations of numerical concepts, I argue that they are unlikely to be part of the ontogenetic foundations of the capacity to represent (...) number. Rather, the developmental source of explicit integer list representations of number are more likely to be systems such as the object–file representations that articulate mid–level object based attention, systems that build parallel representations of small sets of individuals. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  11. (1 other version)A variant to Hilbert's theory of the foundations of arithmetic.G. Kreisel - 1953 - British Journal for the Philosophy of Science 4 (14):107-129.
    IN Hilbert's theory of the foundations of any given branch of mathematics the main problem is to establish the consistency (of a suitable formalisation) of this branch. Since the (intuitionist) criticisms of classical logic, which Hilbert's theory was intended to meet, never even alluded to inconsistencies (in classical arithmetic), and since the investigations of Hilbert's school have always established much more than mere consistency, it is natural to formulate another general problem in the foundations of mathematics: to translate (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  12.  4
    Degrees of relations on canonically ordered natural numbers and integers.Nikolay Bazhenov, Dariusz Kalociński & Michał Wrocławski - forthcoming - Archive for Mathematical Logic:1-33.
    We investigate the degree spectra of computable relations on canonically ordered natural numbers $$(\omega,<)$$ ( ω, < ) and integers $$(\zeta,<)$$ ( ζ, < ). As for $$(\omega,<)$$ ( ω, < ), we provide several criteria that fix the degree spectrum of a computable relation to all c.e. or to all $$\Delta _2$$ Δ 2 degrees; this includes the complete characterization of the degree spectra of so-called computable block functions that have only finitely many types of blocks. (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13. What Numbers Could Be: An Argument That Arithmetical Truths Are Laws of Nature.Lila F. L. Luce - 1984 - Dissertation, The University of Wisconsin - Madison
    Theorems of arithmetic are used, perhaps essentially, to reach conclusions about the natural world. This applicability can be explained in a natural way by analogy with the applicability of statements of law to the world. ;In order to carry out an ontological argument for my thesis, I assume the existence of universals as a working hypothesis. I motivate a theory of laws according to which statements of law are singular statements about scientific properties. Such statements entail generalizations (...)
    No categories
     
    Export citation  
     
    Bookmark  
  14. Arithmetical Identities in a 2-element Model of Tarski's System.Gurgen Asatryan - 2002 - Mathematical Logic Quarterly 48 (2):277-282.
    All arithmetical identities involving 1, addition, multiplication and exponentiation will be true in a 2-element model of Tarski's system if a certain sequence of natural numbers is not bounded. That sequence can be bounded only if the set of Fermat's prime numbers is finite.
     
    Export citation  
     
    Bookmark  
  15. The number of certain integral polynomials and nonrecursive sets of integers, part.Harvey Friedman - manuscript
    We present some examples of mathematically natural nonrecursive sets of integers and relations on integers by combining results from Part 1, recursion theory, and from the negative solution to Hilbert’s 10th Problem ([3], [1], and [2]).
     
    Export citation  
     
    Bookmark  
  16.  37
    The Nature and Origin of Rational Errors in Arithmetic Thinking: Induction from Examples and Prior Knowledge.Talia Ben-Zeev - 1995 - Cognitive Science 19 (3):341-376.
    Students systematically and deliberately apply rule‐based but erroneous algorithms to solving unfamiliar arithmetic problems. These algorithms result in erroneous solutions termed rational errors. Computationally, students' erroneous algorithms can be represented by perturbations or bugs in otherwise correct arithmetic algorithms (Brown & VanLehn, 1980; Langley & Ohilson, 1984; VanLehn, 1983, 1986, 1990; Young S O'Sheo, 1981). Bugs are useful for describing how rational errors occur but bugs are not sufficient for explaining their origin. A possible explanation for this is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  17.  15
    The arithmetic of Z-numbers: theory and applications.Rafik A. Aliev - 2015 - Chennai: World Scientific. Edited by Oleg H. Huseynov, Rashad R. Aliyev & Akif A. Alizadeh.
    Real-world information is imperfect and is usually described in natural language (NL). Moreover, this information is often partially reliable and a degree of reliability is also expressed in NL. In view of this, the concept of a Z-number is a more adequate concept for the description of real-world information. The main critical problem that naturally arises in processing Z-numbers-based information is the computation with Z-numbers. Nowadays, there is no arithmetic of Z-numbers suggested in existing literature. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  18.  35
    A Genetic Interpretation of Neo-Pythagorean Arithmetic.Ioannis M. Vandoulakis - 2010 - Oriens - Occidens 7:113-154.
    The style of arithmetic in the treatises the Neo-Pythagorean authors is strikingly different from that of the "Elements". Namely, it is characterised by the absence of proof in the Euclidean sense and a specific genetic approach to the construction of arithmetic that we are going to describe in our paper. Lack of mathematical sophistication has led certain historians to consider this type of mathematics as a feature of decadence of mathematics in this period [Tannery 1887; Heath 1921]. The (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19. A natural axiomatization of computability and proof of Church’s thesis.Nachum Dershowitz & Yuri Gurevich - 2008 - Bulletin of Symbolic Logic 14 (3):299-350.
    Church's Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turing-computable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally equivalent to an abstract state machine. This theorem presupposes three natural postulates about algorithmic computation. Here, we show that augmenting those postulates with an additional requirement regarding basic operations gives a natural axiomatization of computability and a proof (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  20.  30
    On the Nature and Meaning of Number.Ayşe KÖKCÜ - 2018 - Beytulhikme An International Journal of Philosophy 8 (1):61-77.
    This article is about the understanding of the definition of the number concept and its content in the context of arithmeticisation of analysis and discussions on the basis of mathematics in the nineteenth century. The issue will be addressed historically first and then the proposals for solutions by mathematicians such as Dedekind, Cantor, Peano, as well as by Frege, a logician, will be examined. The discussions on the foundations of arithmetic in the 1870s gained intensity. For mathematics to be (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21.  24
    Greniewski Henryk. Functors of the propositional calculus. VI Zjazd Matematyków Polskich, Warszawa 20–23 IX 1948, supplement to Annales de la Société Polonaise de Mathématique, vol. 22, Cracow 1950, pp. 78–86.Greniewski Henryk. Certain notions of the theory of numbers as applied to the propositional calculus. English with brief Polish summary. Časopis pro pěstováni matematiky a fysiky, vol. 74 , pp. 132–136.Greniewski Henryk. Groups and fields definable in the propositional calculus. Towarzystwo Naukowe Warszawskie, Sprawozdania z posiedzé wydzialu III nauk matematyczno fizycznych , vol. 43 , pp. 53–48.Greniewski H.. Arithmetics of natural numbers as part of the bi-valued propositional calculus. Colloquium matkematicum, vol. 2 no. 3–4 , pp. 291–297. [REVIEW]G. T. Kneebone - 1968 - Journal of Symbolic Logic 33 (2):304-305.
  22.  20
    Kripke, Quine and Steiner on Representing Natural Numbers in Set Theory.Oliver R. Marshall - 2023 - In Carl Posy & Yemima Ben-Menahem (eds.), Mathematical Knowledge, Objects and Applications: Essays in Memory of Mark Steiner. Springer. pp. 157-192.
    Saul Kripke’s analysis of the concept of the natural numbers that we are taught in school yields a novel and axiomatically economical way of representing arithmetic in standard set theory—one that helps to answer Benacerraf’s objection from extraneous content as well as Wittgenstein’s objection from unsurveyability. After describing Kripke’s proposal in some detail, we examine it in the light of work by Quine, Steiner, Parsons, Boolos and Burgess. Although the primary aim of this paper is to present (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  23.  25
    Expansions of the p‐adic numbers that interpret the ring of integers.Nathanaël Mariaule - 2020 - Mathematical Logic Quarterly 66 (1):82-90.
    Let be the field of p‐adic numbers in the language of rings. In this paper we consider the theory of expanded by two predicates interpreted by multiplicative subgroups and where are multiplicatively independent. We show that the theory of this structure interprets Peano arithmetic if α and β have positive p‐adic valuation. If either α or β has zero valuation we show that the theory of has the NIP (“negation of the independence property”) and therefore does not interpret (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  12
    Good math: a geek's guide to the beauty of numbers, logic, and computation.Mark C. Chu-Carroll - 2013 - Dallas, Texas: Pragmatic Programmers.
    Numbers. Natural numbers -- Integers -- Real numbers -- Irrational and transcendental numbers -- Funny numbers. Zero -- e : the unnatural natural number -- [Phi] : the golden ratio -- i : the imaginary number -- Writing numbers. Roman numerals -- Egyptian fractions -- Continued fractions -- Logic. Mr. Spock is not logical -- Proofs, truth, and trees : oh my! -- Programming with logic -- Temporal reasoning -- Sets. Cantor's (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  25.  14
    Undefinability of Multiplication in Presburger Arithmetic with Sets of Powers.Chris Schulz - forthcoming - Journal of Symbolic Logic:1-15.
    We begin by proving that any Presburger-definable image of one or more sets of powers has zero natural density. Then, by adapting the proof of a dichotomy result on o-minimal structures by Friedman and Miller, we produce a similar dichotomy for expansions of Presburger arithmetic on the integers. Combining these two results, we obtain that the expansion of the ordered group of integers by any number of sets of powers does not define multiplication.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  42
    On arithmetic in the Cantor- Łukasiewicz fuzzy set theory.Petr Hájek - 2005 - Archive for Mathematical Logic 44 (6):763-782.
    Axiomatic set theory with full comprehension is known to be consistent in Łukasiewicz fuzzy predicate logic. But we cannot assume the existence of natural numbers satisfying a simple schema of induction; this extension is shown to be inconsistent.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  27.  19
    Multi-sorted version of second order arithmetic.Farida Kachapova - 2016 - Australasian Journal of Logic 13 (5).
    This paper describes axiomatic theories SA and SAR, which are versions of second order arithmetic with countably many sorts for sets of natural numbers. The theories are intended to be applied in reverse mathematics because their multi-sorted language allows to express some mathematical statements in more natural form than in the standard second order arithmetic. We study metamathematical properties of the theories SA, SAR and their fragments. We show that SA is mutually interpretable with the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  60
    Finitist Axiomatic Truth.Sato Kentaro & Jan Walker - 2023 - Journal of Symbolic Logic 88 (1):22-73.
    Following the finitist’s rejection of the complete totality of the natural numbers, a finitist language allows only propositional connectives and bounded quantifiers in the formula-construction but not unbounded quantifiers. This is opposed to the currently standard framework, a first-order language. We conduct axiomatic studies on the notion of truth in the framework of finitist arithmetic in which at least smash function $\#$ is available. We propose finitist variants of Tarski ramified truth theories up to rank $\omega $, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  53
    On ordering and multiplication of natural numbers.Kamila Bendová - 2001 - Archive for Mathematical Logic 40 (1):19-23.
    Even if the ordering of all natural number is (known to be) not definable from multiplication of natural numbers and ordering of primes, there is a simple axiom system in the language $(\times,<,1)$ such that the multiplicative structure of positive integers has a unique expansion by a linear order coinciding with the standard order for primes and satisfying the axioms – namely the standard one.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  30.  60
    Relevant Robinson's arithmetic.J. Michael Dunn - 1979 - Studia Logica 38 (4):407 - 418.
    In this paper two different formulations of Robinson's arithmetic based on relevant logic are examined. The formulation based on the natural numbers (including zero) is shown to collapse into classical Robinson's arithmetic, whereas the one based on the positive integers (excluding zero) is shown not to similarly collapse. Relations of these two formulations to R. K. Meyer's system R# of relevant Peano arithmetic are examined, and some remarks are made about the role of constant (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  31.  69
    Putnam, Peano, and the Malin Génie: could we possibly bewrong about elementary number-theory?Christopher Norris - 2002 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 33 (2):289-321.
    This article examines Hilary Putnam's work in the philosophy of mathematics and - more specifically - his arguments against mathematical realism or objectivism. These include a wide range of considerations, from Gödel's incompleteness-theorem and the limits of axiomatic set-theory as formalised in the Löwenheim-Skolem proof to Wittgenstein's sceptical thoughts about rule-following, Michael Dummett's anti-realist philosophy of mathematics, and certain problems – as Putnam sees them – with the conceptual foundations of Peano arithmetic. He also adopts a thought-experimental approach – (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  32.  33
    Metamathematical Properties of a Constructive Multi-typed Theory.Farida Kachapova - 2017 - Studia Logica 105 (3):587-610.
    This paper describes an axiomatic theory BT, which is a suitable formal theory for developing constructive mathematics, due to its expressive language with countable number of set types and its constructive properties such as the existence and disjunction properties, and consistency with the formal Church thesis. BT has a predicative comprehension axiom and usual combinatorial operations. BT has intuitionistic logic and is consistent with classical logic. BT is mutually interpretable with a so called theory of arithmetical truth PATr and with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  75
    Poincaré on the Foundations of Arithmetic and Geometry. Part 2: Intuition and Unity in Mathematics.Katherine Dunlop - 2017 - Hopos: The Journal of the International Society for the History of Philosophy of Science 7 (1):88-107.
    Part 1 of this article exposed a tension between Poincaré’s views of arithmetic and geometry and argued that it could not be resolved by taking geometry to depend on arithmetic. Part 2 aims to resolve the tension by supposing not merely that intuition’s role is to justify induction on the natural numbers but rather that it also functions to acquaint us with the unity of orders and structures and show practices to fit or harmonize with experience. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  41
    (1 other version)Logic and Nothing Else.Jaroslav Peregrin - manuscript
    Clauses (1) and (2) guarantee the inclusion of all 'intuitive' natural numbers, and (3) guarantees the exclusion of all other objects. Thus, in particular, no nonstandard numbers, which would follow after the intuitive ones are admitted (nonstandard numbers are found in nonstandard models of Peano arithmetic, in which the standard natural numbers are followed by one or more 'copies' of integers running from minus infinity to infinity)1. What is problematic about this delimitation? (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  35.  76
    Classical and Intuitionistic Models of Arithmetic.Kai F. Wehmeier - 1996 - Notre Dame Journal of Formal Logic 37 (3):452-461.
    Given a classical theory T, a Kripke model K for the language L of T is called T-normal or locally PA just in case the classical L-structure attached to each node of K is a classical model of T. Van Dalen, Mulder, Krabbe, and Visser showed that Kripke models of Heyting Arithmetic (HA) over finite frames are locally PA, and that Kripke models of HA over frames ordered like the natural numbers contain infinitely many PA-nodes. We show (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  36.  26
    The story of proof: logic and the history of mathematics.John Stillwell - 2022 - Princeton, New Jersey: Princeton University Press.
    How the concept of proof has enabled the creation of mathematical knowledge. The Story of Proof investigates the evolution of the concept of proof--one of the most significant and defining features of mathematical thought--through critical episodes in its history. From the Pythagorean theorem to modern times, and across all major mathematical disciplines, John Stillwell demonstrates that proof is a mathematically vital concept, inspiring innovation and playing a critical role in generating knowledge. Stillwell begins with Euclid and his influence on the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  37.  52
    Computability, Finiteness and the Standard Model of Arithmetic.Massimiliano Carrara, Enrico Martino & Matteo Plebani - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Cham, Switzerland: Springer International Publishing.
    This paper investigates the question of how we manage to single out the natural number structure as the intended interpretation of our arithmetical language. Horsten submits that the reference of our arithmetical vocabulary is determined by our knowledge of some principles of arithmetic on the one hand, and by our computational abilities on the other. We argue against such a view and we submit an alternative answer. We single out the structure of natural numbers through our (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  38.  73
    Kurt gödel’s first steps in logic: Formal proofs in arithmetic and set theory through a system of natural deduction.Jan von Plato - 2018 - Bulletin of Symbolic Logic 24 (3):319-335.
    What seem to be Kurt Gödel’s first notes on logic, an exercise notebook of 84 pages, contains formal proofs in higher-order arithmetic and set theory. The choice of these topics is clearly suggested by their inclusion in Hilbert and Ackermann’s logic book of 1928, the Grundzüge der theoretischen Logik. Such proofs are notoriously hard to construct within axiomatic logic. Gödel takes without further ado into use a linear system of natural deduction for the full language of higher-order logic, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  39. Internal and external consistency of arithmetic.Yvon Gauthier - 2001 - Logica Trianguli 5:19-41.
    What Gödel referred to as “outer” consistency is contrasted with the “inner” consistency of arithmetic from a constructivist point of view. In the settheoretic setting of Peano arithmetic, the diagonal procedure leads out of the realm of natural numbers. It is shown that Hilbert’s programme of arithmetization points rather to an “internalisation” of consistency. The programme was continued by Herbrand, Gödel and Tarski. Tarski’s method of quantifier elimination and Gödel’s Dialectica interpretation are part and parcel of (...)
     
    Export citation  
     
    Bookmark  
  40.  91
    William of Ockham’s Ontology of Arithmetic.Magali Roques - 2016 - Vivarium 54 (2-3):146-165.
    Ockham’s ontology of arithmetic, specifically his position on the ontological status of natural numbers, has not yet attracted the attention of scholars. Yet it occupies a central role in his nominalism; specifically, Ockham’s position on numbers constitutes a third part of his ontological reductionism, alongside his doctrines of universals and the categories, which have long been recognized to constitute the first two parts. That is, the first part of this program claims that the very idea of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  41.  58
    Gadamer and the Lessons of Arithmetic in Plato’s Hippias Major.John V. Garner - 2017 - Meta: Research in Hermeneutics, Phenomenology, and Practical Philosophy 9 (1):105-136.
    In the 'Hippias Major' Socrates uses a counter-example to oppose Hippias‘s view that parts and wholes always have a "continuous" nature. Socrates argues, for example, that even-numbered groups might be made of parts with the opposite character, i.e. odd. As Gadamer has shown, Socrates often uses such examples as a model for understanding language and definitions: numbers and definitions both draw disparate elements into a sum-whole differing from the parts. In this paper I follow Gadamer‘s suggestion that we should (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  57
    Amalgamation of nonstandard models of arithmetic.Andreas Blass - 1977 - Journal of Symbolic Logic 42 (3):372-386.
    Any two models of arithmetic can be jointly embedded in a third with any prescribed isomorphic submodels as intersection and any prescribed relative ordering of the skies above the intersection. Corollaries include some known and some new theorems about ultrafilters on the natural numbers, for example that every ultrafilter with the "4 to 3" weak Ramsey partition property is a P-point. We also give examples showing that ultrafilters with the "5 to 4" partition property need not be (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Arithmetic, Mathematical Intuition, and Evidence.Richard Tieszen - 2015 - Inquiry: An Interdisciplinary Journal of Philosophy 58 (1):28-56.
    This paper provides examples in arithmetic of the account of rational intuition and evidence developed in my book After Gödel: Platonism and Rationalism in Mathematics and Logic . The paper supplements the book but can be read independently of it. It starts with some simple examples of problem-solving in arithmetic practice and proceeds to general phenomenological conditions that make such problem-solving possible. In proceeding from elementary ‘authentic’ parts of arithmetic to axiomatic formal arithmetic, the paper exhibits (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  44. Empiricism, Probability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Journal of Applied Logic 12 (3):319–348.
    The topic of this paper is our knowledge of the natural numbers, and in particular, our knowledge of the basic axioms for the natural numbers, namely the Peano axioms. The thesis defended in this paper is that knowledge of these axioms may be gained by recourse to judgements of probability. While considerations of probability have come to the forefront in recent epistemology, it seems safe to say that the thesis defended here is heterodox from the vantage (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Indexed Natural Numbers in Mind: A Formal Model of the Basic Mature Number Competence. [REVIEW]Wojciech Krysztofiak - 2012 - Axiomathes 22 (4):433-456.
    The paper undertakes three interdisciplinary tasks. The first one consists in constructing a formal model of the basic arithmetic competence, that is, the competence sufficient for solving simple arithmetic story-tasks which do not require any mathematical mastery knowledge about laws, definitions and theorems. The second task is to present a generalized arithmetic theory, called the arithmetic of indexed numbers (INA). All models of the development of counting abilities presuppose the common assumption that our simple, folk (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  46.  16
    Cognitive Linguistics and the Concept of Number.Rafael Núñez & Tyler Marghetis - 2015 - In Roi Cohen Kadosh & Ann Dowker (eds.), The Oxford Handbook of Numerical Cognition. Oxford University Press UK.
    What is a ‘number,’ as studied within numerical cognition? The term is highly polysemous, and can refer to numerals, numerosity, and a diverse collection of mathematical objects, from natural numbers to infinitesimals. However, numerical cognition has focused primarily on prototypical counting numbersnumbers used regularly to count small collections of objects. Even these simple numbers are far more complex than apparent pre-conditions for numerical abilities like subitizing and approximate discrimination of large numerosity, which we (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  47.  4
    Arithmetic of divisibility in finite models.Marcin Mostowski & Anna E. Wasilewska - 2004 - Mathematical Logic Quarterly 50 (2):169-174.
    We prove that the finite‐model version of arithmetic with the divisibility relation is undecidable (more precisely, it has Π01‐complete set of theorems). Additionally we prove FM‐representability theorem for this class of finite models. This means that a relation R on natural numbers can be described correctly on each input on almost all finite divisibility models if and only if R is of degree ≤0′. We obtain these results by interpreting addition and multiplication on initial segments of finite (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  13
    Interpreting arithmetic in the first-order theory of addition and coprimality of polynomial rings.Javier Utreras - 2019 - Journal of Symbolic Logic 84 (3):1194-1214.
    We study the first-order theory of polynomial rings over a GCD domain and of the ring of formal entire functions over a non-Archimedean field in the language $\{ 1, +, \bot \}$. We show that these structures interpret the first-order theory of the semi-ring of natural numbers. Moreover, this interpretation depends only on the characteristic of the original ring, and thus we obtain uniform undecidability results for these polynomial and entire functions rings of a fixed characteristic. This work (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49.  8
    Models of Relevant Arithmetic.John Slaney - 2022 - Australasian Journal of Logic 19 (1).
    It is well known that the relevant arithmetic R# admits finite models whose domains are the integers modulo n rather than the expected natural numbers. Less well appreciated is the fact that the logic of these models is much more subtle than that of the three-valued structure in which they are usually presented. In this paper we consider the DeMorgan monoids in which R# can be modelled, deriving a fairly complete account of those modelling the stronger (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50. The development of arithmetic in Frege's Grundgesetze der Arithmetik.Richard Heck - 1993 - Journal of Symbolic Logic 58 (2):579-601.
    Frege's development of the theory of arithmetic in his Grundgesetze der Arithmetik has long been ignored, since the formal theory of the Grundgesetze is inconsistent. His derivations of the axioms of arithmetic from what is known as Hume's Principle do not, however, depend upon that axiom of the system--Axiom V--which is responsible for the inconsistency. On the contrary, Frege's proofs constitute a derivation of axioms for arithmetic from Hume's Principle, in (axiomatic) second-order logic. Moreover, though Frege does (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   62 citations  
1 — 50 / 969