12 found
Order:
  1.  63
    The logic of comparative cardinality.Yifeng Ding, Matthew Harrison-Trainor & Wesley H. Holliday - 2020 - Journal of Symbolic Logic 85 (3):972-1005.
    This paper investigates the principles that one must add to Boolean algebra to capture reasoning not only about intersection, union, and complementation of sets, but also about the relative size of sets. We completely axiomatize such reasoning under the Cantorian definition of relative size in terms of injections.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  2.  77
    Logics of Imprecise Comparative Probability.Yifeng Ding, Wesley H. Holliday & Thomas F. Icard - 2021 - International Journal of Approximate Reasoning 132:154-180.
    This paper studies connections between two alternatives to the standard probability calculus for representing and reasoning about uncertainty: imprecise probability andcomparative probability. The goal is to identify complete logics for reasoning about uncertainty in a comparative probabilistic language whose semantics is given in terms of imprecise probability. Comparative probability operators are interpreted as quantifying over a set of probability measures. Modal and dynamic operators are added for reasoning about epistemic possibility and updating sets of probability measures.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Another Problem in Possible World Semantics.Yifeng Ding & Wesley H. Holliday - 2020 - In Nicola Olivetti & Rineke Verbrugge (eds.), Advances in Modal Logic, Vol. 13. College Publications. pp. 149-168.
    In "A Problem in Possible-World Semantics," David Kaplan presented a consistent and intelligible modal principle that cannot be validated by any possible world frame (in the terminology of modal logic, any neighborhood frame). However, Kaplan's problem is tempered by the fact that his principle is stated in a language with propositional quantification, so possible world semantics for the basic modal language without propositional quantifiers is not directly affected, and the fact that on careful inspection his principle does not target the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Weakly Aggregative Modal Logic: Characterization and Interpolation.Jixin Liu, Yanjing Wang & Yifeng Ding - 2019 - In Patrick Blackburn, Emiliano Lorini & Meiyun Guo (eds.), Logic, Rationality, and Interaction 7th International Workshop, LORI 2019, Chongqing, China, October 18–21, 2019, Proceedings. Springer. pp. 153-167.
    Weakly Aggregative Modal Logic (WAML) is a collection of disguised polyadic modal logics with n-ary modalities whose arguments are all the same. WAML has some interesting applications on epistemic logic and logic of games, so we study some basic model theoretical aspects of WAML in this paper. Specifically, we give a van Benthem-Rosen characterization theorem of WAML based on an intuitive notion of bisimulation and show that each basic WAML system Kn lacks Craig Interpolation.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  76
    On the Logic of Belief and Propositional Quantification.Yifeng Ding - 2021 - Journal of Philosophical Logic 50 (5):1143-1198.
    We consider extending the modal logic KD45, commonly taken as the baseline system for belief, with propositional quantifiers that can be used to formalize natural language sentences such as “everything I believe is true” or “there is something that I neither believe nor disbelieve.” Our main results are axiomatizations of the logics with propositional quantifiers of natural classes of complete Boolean algebras with an operator validating KD45. Among them is the class of complete, atomic, and completely multiplicative BAOs validating KD45. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6.  15
    Hypergraphs, Local Reasoning, and Weakly Aggregative Modal Logic.Yifeng Ding, Jixin Liu & Yanjing Wang - 2021 - In Sujata Ghosh & Thomas Icard (eds.), Logic, Rationality, and Interaction: 8th International Workshop, Lori 2021, Xi’an, China, October 16–18, 2021, Proceedings. Springer Verlag. pp. 58-72.
    This paper connects the following three apparently unrelated topics: an epistemic framework fighting logical omniscience, a class of generalized graphs without the arities of relations, and a family of non-normal modal logics rejecting the aggregative axiom. Through neighborhood frames as their meeting point, we show that, among many completeness results obtained in this paper, the limit of a family of weakly aggregative logics is both exactly the modal logic of hypergraphs and also the epistemic logic of local reasoning with veracity (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. On the Logics with Propositional Quantifiers Extending S5Π.Yifeng Ding - 2018 - In Guram Bezhanishvili, Giovanna D'Agostino, George Metcalfe & Thomas Studer (eds.), Advances in Modal Logic 12, proceedings of the 12th conference on "Advances in Modal Logic," held in Bern, Switzerland, August 27-31, 2018. pp. 219-235.
    Scroggs's theorem on the extensions of S5 is an early landmark in the modern mathematical studies of modal logics. From it, we know that the lattice of normal extensions of S5 is isomorphic to the inverse order of the natural numbers with infinity and that all extensions of S5 are in fact normal. In this paper, we consider extending Scroggs's theorem to modal logics with propositional quantifiers governed by the axioms and rules analogous to the usual ones for ordinary quantifiers. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  5
    An axiomatic characterization of Split Cycle.Yifeng Ding, Wesley H. Holliday & Eric Pacuit - forthcoming - Social Choice and Welfare.
    A number of rules for resolving majority cycles in elections have been proposed in the literature. Recently, Holliday and Pacuit (Journal of Theoretical Politics 33 (2021) 475-524) axiomatically characterized the class of rules refined by one such cycle-resolving rule, dubbed Split Cycle: in each majority cycle, discard the majority preferences with the smallest majority margin. They showed that any rule satisfying five standard axioms plus a weakening of Arrow’s Independence of Irrelevant Alternatives (IIA), called Coherent IIA, is refined by Split (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  9.  51
    Someone knows that local reasoning on hypergraphs is a weakly aggregative modal logic.Yifeng Ding, Jixin Liu & Yanjing Wang - 2023 - Synthese 201 (2):1-27.
    This paper connects the following four topics: a class of generalized graphs whose relations do not have fixed arities called hypergraphs, a family of non-normal modal logics rejecting the aggregative axiom, an epistemic framework fighting logical omniscience, and the classical group knowledge modality of ‘someone knows’. Through neighborhood frames as their meeting point, we show that, among many completeness results obtained in this paper, the limit of a family of weakly aggregative logics is both exactly the modal logic of hypergraphs (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  25
    Modal Logics with Non-rigid Propositional Designators.Yifeng Ding - 2023 - In Natasha Alechina, Andreas Herzig & Fei Liang (eds.), Logic, Rationality, and Interaction: 9th International Workshop, LORI 2023, Jinan, China, October 26–29, 2023, Proceedings. Springer Nature Switzerland. pp. 47-62.
    In most modal logics, atomic propositional symbols are directly representing the meaning of sentences (such as sets of possible worlds). In other words, they use only rigid propositional designators. This means they are not able to handle uncertainty in meaning directly at the sentential level. In this paper, we offer a modal language involving non-rigid propositional designators which can also carefully distinguish de re and de dicto use of these designators. Then, we axiomatize the logics in this language with respect (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  11.  43
    Model Theoretical Aspects of Weakly Aggregative Modal Logic.Jixin Liu, Yifeng Ding & Yanjing Wang - 2022 - Journal of Logic, Language and Information 31 (2):261-286.
    Weakly Aggregative Modal Logic ) is a collection of disguised polyadic modal logics with n-ary modalities whose arguments are all the same. \ has interesting applications on epistemic logic, deontic logic, and the logic of belief. In this paper, we study some basic model theoretical aspects of \. Specifically, we first give a van Benthem–Rosen characterization theorem of \ based on an intuitive notion of bisimulation. Then, in contrast to many well known normal or non-normal modal logics, we show that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  12.  90
    When Do Introspection Axioms Matter for Multi-Agent Epistemic Reasoning?Wesley H. Holliday, Yifeng Ding & Cedegao Zhang - 2019 - Electronic Proceedings in Theoretical Computer Science 297:121–139.
    The early literature on epistemic logic in philosophy focused on reasoning about the knowledge or belief of a single agent, especially on controversies about "introspection axioms" such as the 4 and 5 axioms. By contrast, the later literature on epistemic logic in computer science and game theory has focused on multi-agent epistemic reasoning, with the single-agent 4 and 5 axioms largely taken for granted. In the relevant multi-agent scenarios, it is often important to reason about what agent A believes about (...)
    Direct download  
     
    Export citation  
     
    Bookmark