Results for 'Theory of Types'

955 found
Order:
  1. The theory of types.Alasdair Urquhart - 2003 - In Nicholas Griffin (ed.), The Cambridge companion to Bertrand Russell. New York: Cambridge University Press. pp. 286--309.
     
    Export citation  
     
    Bookmark   9 citations  
  2.  49
    Theories of types and names with positive stratified comprehension.Pierluigi Minari - 1999 - Studia Logica 62 (2):215-242.
    We introduce a certain extension of -calculus, and show that it has the Church-Rosser property. The associated open-term extensional combinatory algebra is used as a basis to construct models for theories of Explict Mathematics (formulated in the language of "types and names") with positive stratified comprehension. In such models, types are interpreted as collections of solutions (of terms) w.r. to a set of numerals. Exploiting extensionality, we prove some consistency results for special ontological axioms which are refutable under (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3. The Theory of Types.John Richards - 1971 - Dissertation, State University of New York at Buffalo
    No categories
     
    Export citation  
     
    Bookmark   2 citations  
  4. Theory of Types of Religious Experience : Some Critical Remarks.Saral Jhingran - 1981 - Indian Philosophical Quarterly 8 (2):283.
     
    Export citation  
     
    Bookmark  
  5. (1 other version)An Intuitionistic Theory of Types: Predicative Part.Per Martin-Löf - 1975 - In ¸ Iterose1975. North Holland.
  6.  28
    An intuitionistic theory of types with assumptions of high-arity variables.A. Bossi & S. Valentini - 1992 - Annals of Pure and Applied Logic 57 (2):93-149.
    After an introductory discussion on Martin-Löf's Intuitionistic Theory of Types , the paper introduces the notion of assumption of high-arity variable. Then the original theory is extended in a very uniform way by means of the new assumptions. Some improvements allowed by high-arity variables are shown. The main result of the paper is a normal form theorem for HITT. The detailed proof follows a computability method ‘a la Tait’. The main consequences of the normal form theorem are: (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  7.  57
    The Theory of Types: A Further Note.J. J. C. Smart - 1951 - Analysis 12 (1):24 -.
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  8.  52
    The Theory of Types Again.J. J. C. Smart - 1951 - Analysis 11 (6):131 - 133.
  9. Intensional models for the theory of types.Reinhard Muskens - 2007 - Journal of Symbolic Logic 72 (1):98-118.
    In this paper we define intensional models for the classical theory of types, thus arriving at an intensional type logic ITL. Intensional models generalize Henkin's general models and have a natural definition. As a class they do not validate the axiom of Extensionality. We give a cut-free sequent calculus for type theory and show completeness of this calculus with respect to the class of intensional models via a model existence theorem. After this we turn our attention to (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  10.  44
    A decidable theory of type assignment.William R. Stirton - 2013 - Archive for Mathematical Logic 52 (5-6):631-658.
    This article investigates a theory of type assignment (assigning types to lambda terms) called ETA which is intermediate in strength between the simple theory of type assignment and strong polymorphic theories like Girard’s F (Proofs and types. Cambridge University Press, Cambridge, 1989). It is like the simple theory and unlike F in that the typability and type-checking problems are solvable with respect to ETA. This is proved in the article along with three other main results: (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Russell's Relations, Wittgenstein's Objects, and the Theory of Types.Giorgio Lando - 2012 - Teorema: International Journal of Philosophy (2):21-35.
    We discuss a previously unnoticed resemblance between the theory of relations and predicates in The Philosophy of Logical Atomism [TPLA] by Russell and the theory of objects and names in the Tractatus Logico-Philosophicus [TLP] by Wittgenstein. Points of likeness are detected on three levels: ontology, syntax, and semantics. This analogy explains the prima facie similarities between the informal presentation of the theory of types in TPLA and the sections of the TLP devoted to this same topic. (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. An intuitionistic theory of types.Per Martin-Löf - 1998 - In Giovanni Sambin & Jan M. Smith (eds.), Twenty Five Years of Constructive Type Theory. Clarendon Press. pp. 127–172.
     
    Export citation  
     
    Bookmark   6 citations  
  13.  28
    On the proof theory of type two functionals based on primitive recursive operations.David Steiner & Thomas Strahm - 2006 - Mathematical Logic Quarterly 52 (3):237-252.
    This paper is a companion to work of Feferman, Jäger, Glaß, and Strahm on the proof theory of the type two functionals μ and E1 in the context of Feferman-style applicative theories. In contrast to the previous work, we analyze these two functionals in the context of Schlüter's weakened applicative basis PRON which allows for an interpretation in the primitive recursive indices. The proof-theoretic strength of PRON augmented by μ and E1 is measured in terms of the two subsystems (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  14.  55
    The theory of types.Paul Weiss - 1928 - Mind 37 (147):338-348.
  15. (1 other version)Completeness in the theory of types.Leon Henkin - 1950 - Journal of Symbolic Logic 15 (2):81-91.
  16. Why did Frege reject the theory of types?Wim Vanrie - 2021 - British Journal for the History of Philosophy 29 (3):517-536.
    I investigate why Frege rejected the theory of types, as Russell presented it to him in their correspondence. Frege claims that it commits one to violations of the law of excluded middle, but this complaint seems to rest on a dogmatic refusal to take Russell’s proposal seriously on its own terms. What is at stake is not so much the truth of a law of logic, but the structure of the hierarchy of the logical categories, something Frege seems (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  54
    Automated type-checking for the ramified theory of types of the Principia Mathematica of Russell and Whitehead.M. Randall Holmes - unknown
    This paper described a formal theory of type judgments for propositional logic notations of PM; I felt the need of my own automated type checker to check their examples. The type checker I wrote did indeed serve to help me referee the paper, but also took a rather different approach to notation and typing for propositional functions of PM, which proved worth writing up independently in our own paper: Holmes, M. Randall, “Polymorphic type– checking for the ramified theory (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  18.  39
    (1 other version)An interpretation of martin‐löf's constructive theory of types in elementary topos theory.Anne Preller - 1992 - Mathematical Logic Quarterly 38 (1):213-240.
    We give a formal interpretation of Martin-Löf's Constructive Theory of Types in Elementary Topos Theory which is presented as a formalised theory with intensional equality of objects. Types are interpreted as arrows and variables as sections of their types. This is necessary to model correctly the working of the assumption x ∈ A. Then intensional equality interprets equality of types. The normal form theorem which asserts that the interpretation of a type is intensional (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  19.  20
    Theory of Types and Theory of Knowledge [review of Dieter Würtz, Das Verhältnis von Beobachtungs- und theoretischer Sprache in der Erkenntnistheorie Bertrand Russells ].Bernd Frohmann - 1983 - Russell: The Journal of Bertrand Russell Studies 3 (2):183.
  20. Frege’s Theory of Types.Bruno Bentzen - 2023 - Manuscrito 46 (4):2022-0063.
    It is often claimed that the theory of function levels proposed by Frege in Grundgesetze der Arithmetik anticipates the hierarchy of types that underlies Church’s simple theory of types. This claim roughly states that Frege presupposes a type of functions in the sense of simple type theory in the expository language of Grundgesetze. However, this view makes it hard to accommodate function names of two arguments and view functions as incomplete entities. I propose and defend (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  21.  20
    Theories of types and ordered pairs.John E. Cooley - 1975 - Notre Dame Journal of Formal Logic 16 (3):418-420.
  22.  61
    Russell's theory of types, 1901–1910: its complex origins in the unpublished manuscripts.Francisco A. Rodriguez Consuegra - 1989 - History and Philosophy of Logic 10 (2):131-164.
    In this article I try to show the philosophical continuity of Russell's ideas from his paradox of classes to Principia mathematica. With this purpose, I display the main results (descriptions, substitutions and types) as moments of the same development, whose principal goal was (as in his The principles) to look for a set of primitive ideas and propositions giving an account of all mathematics in logical terms, but now avoiding paradoxes. The sole way to reconstruct this central period in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  51
    Decidable Fragments of the Simple Theory of Types with Infinity and $mathrm{NF}$.Anuj Dawar, Thomas Forster & Zachiri McKenzie - 2017 - Notre Dame Journal of Formal Logic 58 (3):433-451.
    We identify complete fragments of the simple theory of types with infinity and Quine’s new foundations set theory. We show that TSTI decides every sentence ϕ in the language of type theory that is in one of the following forms: ϕ=∀x1r1⋯∀xkrk∃y1s1⋯∃ylslθ where the superscripts denote the types of the variables, s1>⋯>sl, and θ is quantifier-free, ϕ=∀x1r1⋯∀xkrk∃y1s⋯∃ylsθ where the superscripts denote the types of the variables and θ is quantifier-free. This shows that NF decides every (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Fitchův paradox poznatelnosti a rozvětvená teorie typů [Fitch's Paradox of Knowability and Ramified Theory of Types].Jiri Raclavsky - 2013 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 20:144-165.
    It is already known that Fitch’s knowability paradox can be solved by typing knowledge within ramified theory of types. One of the aims of this paper is to provide a greater defence of the approach against recently raised criticism. My second goal is to make a sufficient support for an assumption which is needed for this particular application of typing knowledge but which is not inherent to ramified theory of types as such.
     
    Export citation  
     
    Bookmark  
  25.  58
    Paradigm Shifts, Scientific Revolutions, and the Unit of Scientific Change: Towards a Post-Kuhnian Theory of Types of Scientific Development.Paul C. L. Tang - 1984 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1984:125 - 136.
    One of the central problems arising from just the descriptive aspect of Kuhn's theory of scientific development by revolutions concerns the problem of generality. Is Kuhn's theory general enough to encompass the development of all the sciences, including both the natural sciences and the social sciences? The answer to this question is no. It is argued that this negative answer is due not to the nature of the sciences themselves but to the nature of Kuhn's theory and, (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  26.  92
    A partial functions version of church's simple theory of types.William M. Farmer - 1990 - Journal of Symbolic Logic 55 (3):1269-1291.
    Church's simple theory of types is a system of higher-order logic in which functions are assumed to be total. We present in this paper a version of Church's system called PF in which functions may be partial. The semantics of PF, which is based on Henkin's general-models semantics, allows terms to be nondenoting but requires formulas to always denote a standard truth value. We prove that PF is complete with respect to its semantics. The reasoning mechanism in PF (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  27.  24
    A theory of propositional types.Leon Henkin - 1963 - Fundamenta Mathematicae 52:323-334.
  28.  34
    Russell's theory of types.Edwin Guthrie - 1915 - Journal of Philosophy, Psychology and Scientific Methods 12 (14):381-385.
  29. Wittgenstein and the theory of types.Hidé Ishiguro - 1981 - In Irving Block & Ludwig Wittgenstein (eds.), Perspectives on the philosophy of Wittgenstein. Cambridge: MIT Press. pp. 43-60.
     
    Export citation  
     
    Bookmark   8 citations  
  30.  64
    Remarks on the theory of types.Frederic B. Fitch - 1947 - Mind 56 (222):184.
    No categories
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  31.  98
    Reductions in the Theory of Types.K. Jaakko Hintikka - 1966 - Journal of Symbolic Logic 31 (4):660-660.
  32.  7
    The Theory of Logical Types: Monographs in Modern Logic.Irving M. Copi - 2011 - Routledge.
    This reissue, first published in 1971, provides a brief historical account of the Theory of Logical Types; and describes the problems that gave rise to it, its various different formulations (Simple and Ramified), the difficulties connected with each, and the criticisms that have been directed against it. Professor Copi seeks to make the subject accessible to the non-specialist and yet provide a sufficiently rigorous exposition for the serious student to see exactly what the theory is and how (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  33. (1 other version)On the theory of types.W. V. Quine - 1938 - Journal of Symbolic Logic 3 (4):125-139.
  34.  57
    The Origin of the Theory of Types.Ryo Ito - 2018 - Annals of the Japan Association for Philosophy of Science 27:27-44.
  35.  30
    Translation of the simple theory of types into a first order language.H. Julian Wadleigh - 1974 - Notre Dame Journal of Formal Logic 15 (3):432-442.
  36.  51
    A correspondence between Martin-löf type theory, the ramified theory of types and pure type systems.Fairouz Kamareddine & Twan Laan - 2001 - Journal of Logic, Language and Information 10 (3):375-402.
    In Russell''s Ramified Theory of Types RTT, two hierarchical concepts dominate:orders and types. The use of orders has as a consequencethat the logic part of RTT is predicative.The concept of order however, is almost deadsince Ramsey eliminated it from RTT. This is whywe find Church''s simple theory of types (which uses the type concept without the order one) at the bottom of the Barendregt Cube rather than RTT. Despite the disappearance of orders which have a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  32
    Arithmetic and the theory of types.M. Boffa - 1984 - Journal of Symbolic Logic 49 (2):621-624.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  38.  38
    Wittgenstein on Russell's theory of types.James B. Davant - 1975 - Notre Dame Journal of Formal Logic 16 (1):102-108.
  39.  97
    Self-Description and the Theory of Types.Roy Harris - 1968 - Analysis 28 (6):207 - 208.
  40.  29
    The Paradoxes and the Theory of Types [review of Philippe de Rouilhan, Russell et le cercle des paradoxes ].Russell Wahl - 1997 - Russell: The Journal of Bertrand Russell Studies 17 (2).
  41. Axiomatic Theories of Partial Ground II: Partial Ground and Hierarchies of Typed Truth.Johannes Korbmacher - 2018 - Journal of Philosophical Logic 47 (2):193-226.
    This is part two of a two-part paper in which we develop an axiomatic theory of the relation of partial ground. The main novelty of the paper is the of use of a binary ground predicate rather than an operator to formalize ground. In this part of the paper, we extend the base theory of the first part of the paper with hierarchically typed truth-predicates and principles about the interaction of partial ground and truth. We show that our (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  42.  44
    A Modification of the Theory of Types.A. Ushenko - 1934 - The Monist 44 (1):147-149.
  43. The Theory of Logical Types.Irving Marmer Copi - 1971 - London: Routledge.
    This reissue, first published in 1971, provides a brief historical account of the Theory of Logical Types; and describes the problems that gave rise to it, its various different formulations, the difficulties connected with each, and the criticisms that have been directed against it. Professor Copi seeks to make the subject accessible to the non-specialist and yet provide a sufficiently rigorous exposition for the serious student to see exactly what the theory is and how it works.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  44.  29
    Spaces of types in positive model theory.Levon Haykazyan - 2019 - Journal of Symbolic Logic 84 (2):833-848.
    We introduce a notion of the space of types in positive model theory based on Stone duality for distributive lattices. We show that this space closely mirrors the Stone space of types in the full first-order model theory with negation (Tarskian model theory). We use this to generalise some classical results on countable models from the Tarskian setting to positive model theory.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  45.  12
    Truth-value Semantics for the Theory of Types.H. Leblanc & R. K. Meyer - 1970 - In Karel Lambert (ed.), Philosophical problems in Logic. Dordrecht,: Reidel. pp. 77--101.
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  46.  31
    Substitution and the Theory of Types [review of Gregory Landini, Russell's Hidden Substitutional Theory ].Graham Stevens - 2003 - Russell: The Journal of Bertrand Russell Studies 23 (2).
  47.  74
    A modern elaboration of the ramified theory of types.Twan Laan & Rob Nederpelt - 1996 - Studia Logica 57 (2-3):243 - 278.
    The paper first formalizes the ramified type theory as (informally) described in the Principia Mathematica [32]. This formalization is close to the ideas of the Principia, but also meets contemporary requirements on formality and accuracy, and therefore is a new supply to the known literature on the Principia (like [25], [19], [6] and [7]).As an alternative, notions from the ramified type theory are expressed in a lambda calculus style. This situates the type system of Russell and Whitehead in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  48. ""Bertrand Russell," On Denoting"(1905) and" Mathematical Logic as Based on the Theory of Types"(1908).Stewart Shapiro - 2003 - In Jorge J. E. Gracia, Gregory M. Reichberg & Bernard N. Schumacher (eds.), The Classics of Western Philosophy: A Reader's Guide. Malden, MA: Wiley-Blackwell. pp. 460.
  49.  14
    An Intuitionistic Theory of Types: Predicative Part. [REVIEW]H. E. Rose & J. C. Shepherdson - 1984 - Journal of Symbolic Logic 49 (1):311-313.
  50. The Antinomy of the Theory of Types and Solution of Logico-Mathematical Paradoxes'.A. Dumitriu - 1974 - International Logic Review 5 (1):83-102.
     
    Export citation  
     
    Bookmark  
1 — 50 / 955