12 found
Order:
  1.  18
    Induction and Skolemization in saturation theorem proving.Stefan Hetzl & Jannik Vierling - 2023 - Annals of Pure and Applied Logic 174 (1):103167.
  2.  74
    On the complexity of proof deskolemization.Matthias Baaz, Stefan Hetzl & Daniel Weller - 2012 - Journal of Symbolic Logic 77 (2):669-686.
    We consider the following problem: Given a proof of the Skolemization of a formula F, what is the length of the shortest proof of F? For the restriction of this question to cut-free proofs we prove corresponding exponential upper and lower bounds.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  3.  36
    On the non-confluence of cut-elimination.Matthias Baaz & Stefan Hetzl - 2011 - Journal of Symbolic Logic 76 (1):313 - 340.
    We study cut-elimination in first-order classical logic. We construct a sequence of polynomial-length proofs having a non-elementary number of different cut-free normal forms. These normal forms are different in a strong sense: they not only represent different Herbrand-disjunctions but also differ in their propositional structure. This result illustrates that the constructive content of a proof in classical logic is not uniquely determined but rather depends on the chosen method for extracting it.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  33
    Herbrand's theorem as higher order recursion.Bahareh Afshari, Stefan Hetzl & Graham E. Leigh - 2020 - Annals of Pure and Applied Logic 171 (6):102792.
  5.  29
    Inductive theorem proving based on tree grammars.Sebastian Eberhard & Stefan Hetzl - 2015 - Annals of Pure and Applied Logic 166 (6):665-700.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  6.  19
    Quantifier-free induction for lists.Stefan Hetzl & Jannik Vierling - 2024 - Archive for Mathematical Logic 63 (7):813-835.
    We investigate quantifier-free induction for Lisp-like lists constructed inductively from the empty list nil nil nil and the operation cons{\textit{cons}} cons, that adds an element to the front of a list. First we show that, for m1m \ge 1 m ≥ 1, quantifier-free mm m -step induction does not simulate quantifier-free (m+1)(m + 1) ( m + 1 ) -step induction. Secondly, we show that for all m1m \ge 1 m ≥ 1, quantifier-free mm m -step induction does not (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7.  23
    Describing proofs by short tautologies.Stefan Hetzl - 2009 - Annals of Pure and Applied Logic 159 (1-2):129-145.
    Herbrand’s theorem is one of the most fundamental results about first-order logic. In the context of proof analysis, Herbrand-disjunctions are used for describing the constructive content of cut-free proofs. However, given a proof with cuts, the computation of a Herbrand-disjunction is of significant computational complexity, as the cuts in the proof have to be eliminated first.In this paper we prove a generalization of Herbrand’s theorem: From a proof with cuts, one can read off a small tautology composed of instances of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  8.  19
    A Simplified Proof of the Epsilon Theorems.Stefan Hetzl - 2024 - Review of Symbolic Logic 17 (4):1248-1263.
    We formulate Hilbert’s epsilon calculus in the context of expansion proofs. This leads to a simplified proof of the epsilon theorems by disposing of the need for prenexification, Skolemisation, and their respective inverse transformations. We observe that the natural notion of cut in the epsilon calculus is associative.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9. CERES in higher-order logic.Stefan Hetzl, Alexander Leitsch & Daniel Weller - 2011 - Annals of Pure and Applied Logic 162 (12):1001-1034.
    We define a generalization of the first-order cut-elimination method CERES to higher-order logic. At the core of lies the computation of an set of sequents from a proof π of a sequent S. A refutation of in a higher-order resolution calculus can be used to transform cut-free parts of π into a cut-free proof of S. An example illustrates the method and shows that can produce meaningful cut-free proofs in mathematics that traditional cut-elimination methods cannot reach.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  74
    On the form of witness terms.Stefan Hetzl - 2010 - Archive for Mathematical Logic 49 (5):529-554.
    We investigate the development of terms during cut-elimination in first-order logic and Peano arithmetic for proofs of existential formulas. The form of witness terms in cut-free proofs is characterized in terms of structured combinations of basic substitutions. Based on this result, a regular tree grammar computing witness terms is given and a class of proofs is shown to have only elementary cut-elimination.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11.  55
    The Computational Content of Arithmetical Proofs.Stefan Hetzl - 2012 - Notre Dame Journal of Formal Logic 53 (3):289-296.
    For any extension $T$ of $I\Sigma_{1}$ having a cut-elimination property extending that of $I\Sigma_{1}$ , the number of different proofs that can be obtained by cut elimination from a single $T$ -proof cannot be bound by a function which is provably total in $T$.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  12.  26
    Herbrand Confluence for First-Order Proofs with Π2-Cuts.Graham E. Leigh, Stefan Hetzl & Bahareh Afshari - 2016 - In Peter Schuster & Dieter Probst, Concepts of Proof in Mathematics, Philosophy, and Computer Science. Boston: De Gruyter. pp. 5-40.
    Direct download  
     
    Export citation  
     
    Bookmark