Results for 'Set theory. '

933 found
Order:
  1.  25
    Constructive Set Theory with Operations.Andrea Cantini & Laura Crosilla - 2007 - In Alessandro Andretta, Keith Kearnes & Domenico Zambella (eds.), Logic Colloquium 2004: Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, Held in Torino, Italy, July 25-31, 2004. Cambridge: Cambridge University Press.
    We present an extension of constructive Zermelo{Fraenkel set theory [2]. Constructive sets are endowed with an applicative structure, which allows us to express several set theoretic constructs uniformly and explicitly. From the proof theoretic point of view, the addition is shown to be conservative. In particular, we single out a theory of constructive sets with operations which has the same strength as Peano arithmetic.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  48
    Set Theory and Its Logic.J. C. Shepherdson & Willard Van Orman Quine - 1965 - Philosophical Quarterly 15 (61):371.
  3. Set Theory.John P. Burgess - 2022 - Cambridge University Press.
    Set theory is a branch of mathematics with a special subject matter, the infinite, but also a general framework for all modern mathematics, whose notions figure in every branch, pure and applied. This Element will offer a concise introduction, treating the origins of the subject, the basic notion of set, the axioms of set theory and immediate consequences, the set-theoretic reconstruction of mathematics, and the theory of the infinite, touching also on selected topics from higher set theory, controversial axioms and (...)
    No categories
     
    Export citation  
     
    Bookmark  
  4.  66
    Set theory: Constructive and intuitionistic ZF.Laura Crosilla - 2010 - Stanford Encyclopedia of Philosophy.
    Constructive and intuitionistic Zermelo-Fraenkel set theories are axiomatic theories of sets in the style of Zermelo-Fraenkel set theory (ZF) which are based on intuitionistic logic. They were introduced in the 1970's and they represent a formal context within which to codify mathematics based on intuitionistic logic. They are formulated on the basis of the standard first order language of Zermelo-Fraenkel set theory and make no direct use of inherently constructive ideas. In working in constructive and intuitionistic ZF we can thus (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  5.  88
    Set Theory with Urelements.Bokai Yao - 2023 - Dissertation, University of Notre Dame
    This dissertation aims to provide a comprehensive account of set theory with urelements. In Chapter 1, I present mathematical and philosophical motivations for studying urelement set theory and lay out the necessary technical preliminaries. Chapter 2 is devoted to the axiomatization of urelement set theory, where I introduce a hierarchy of axioms and discuss how ZFC with urelements should be axiomatized. The breakdown of this hierarchy of axioms in the absence of the Axiom of Choice is also explored. In Chapter (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  6.  46
    Cantorian Set Theory and Limitation of Size.Michael Hallett - 1984 - Oxford, England: Clarendon Press.
    This volume presents the philosophical and heuristic framework Cantor developed and explores its lasting effect on modern mathematics. "Establishes a new plateau for historical comprehension of Cantor's monumental contribution to mathematics." --The American Mathematical Monthly.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   81 citations  
  7. Does set theory really ground arithmetic truth?Alfredo Roque Freire - manuscript
    We consider the foundational relation between arithmetic and set theory. Our goal is to criticize the construction of standard arithmetic models as providing grounds for arithmetic truth (even in a relative sense). Our method is to emphasize the incomplete picture of both theories and treat models as their syntactical counterparts. Insisting on the incomplete picture will allow us to argue in favor of the revisability of the standard model interpretation. We then show that it is hopeless to expect that the (...)
     
    Export citation  
     
    Bookmark  
  8.  58
    Naive Set Theory and Nontransitive Logic.David Ripley - 2015 - Review of Symbolic Logic 8 (3):553-571.
    In a recent series of papers, I and others have advanced new logical approaches to familiar paradoxes. The key to these approaches is to accept full classical logic, and to accept the principles that cause paradox, while preventing trouble by allowing a certain sort ofnontransitivity. Earlier papers have treated paradoxes of truth and vagueness. The present paper will begin to extend the approach to deal with the familiar paradoxes arising in naive set theory, pointing out some of the promises and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  9.  68
    Set Theory, Logic and Their Limitations.Moshe Machover - 1996 - Cambridge University Press.
    This is an introduction to set theory and logic that starts completely from scratch. The text is accompanied by many methodological remarks and explanations.
    Direct download  
     
    Export citation  
     
    Bookmark   17 citations  
  10. Higher set theory.Harvey Friedman - manuscript
    Russell’s way out of his paradox via the impre-dicative theory of types has roughly the same logical power as Zermelo set theory - which supplanted it as a far more flexible and workable axiomatic foundation for mathematics. We discuss some new formalisms that are conceptually close to Russell, yet simpler, and have the same logical power as higher set theory - as represented by the far more powerful Zermelo-Frankel set theory and beyond. END.
     
    Export citation  
     
    Bookmark   3 citations  
  11. (1 other version)Cantorian Set Theory and Limitation of Size.Michael Hallett - 1986 - Mind 95 (380):523-528.
    No categories
     
    Export citation  
     
    Bookmark   87 citations  
  12. Set Theory and its Philosophy: A Critical Introduction.Michael D. Potter - 2004 - Oxford, England: Oxford University Press.
    Michael Potter presents a comprehensive new philosophical introduction to set theory. Anyone wishing to work on the logical foundations of mathematics must understand set theory, which lies at its heart. Potter offers a thorough account of cardinal and ordinal arithmetic, and the various axiom candidates. He discusses in detail the project of set-theoretic reduction, which aims to interpret the rest of mathematics in terms of set theory. The key question here is how to deal with the paradoxes that bedevil set (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   104 citations  
  13. Naïve set theory is innocent!A. Weir - 1998 - Mind 107 (428):763-798.
    Naive set theory, as found in Frege and Russell, is almost universally believed to have been shown to be false by the set-theoretic paradoxes. The standard response has been to rank sets into one or other hierarchy. However it is extremely difficult to characterise the nature of any such hierarchy without falling into antinomies as severe as the set-theoretic paradoxes themselves. Various attempts to surmount this problem are examined and criticised. It is argued that the rejection of naive set theory (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  14.  16
    Lectures in set theory.Thomas J. Jech - 1971 - New York,: Springer Verlag.
  15.  29
    Introduction to axiomatic set theory.Gaisi Takeuti - 1971 - New York,: Springer Verlag. Edited by Wilson M. Zaring.
    In 1963, the first author introduced a course in set theory at the University of Illinois whose main objectives were to cover Godel's work on the con sistency of the Axiom of Choice (AC) and the Generalized Continuum Hypothesis (GCH), and Cohen's work on the independence of the AC and the GCH. Notes taken in 1963 by the second author were taught by him in 1966, revised extensively, and are presented here as an introduction to axiomatic set theory. Texts in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  16.  78
    The Reality of Mathematics and the Case of Set Theory.Daniel Isaacson - 2010 - In Zsolt Novák & András Simonyi (eds.), Truth, reference, and realism. New York: Central European University Press. pp. 1-76.
  17.  36
    Quantum set theory: Transfer Principle and De Morgan's Laws.Masanao Ozawa - 2021 - Annals of Pure and Applied Logic 172 (4):102938.
    In quantum logic, introduced by Birkhoff and von Neumann, De Morgan's Laws play an important role in the projection-valued truth value assignment of observational propositions in quantum mechanics. Takeuti's quantum set theory extends this assignment to all the set-theoretical statements on the universe of quantum sets. However, Takeuti's quantum set theory has a problem in that De Morgan's Laws do not hold between universal and existential bounded quantifiers. Here, we solve this problem by introducing a new truth value assignment for (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Set theory and physics.K. Svozil - 1995 - Foundations of Physics 25 (11):1541-1560.
    Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for physical applications are discussed: (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19.  65
    (1 other version)Boolean-Valued Models and Independence Proofs in Set Theory.J. L. Bell & Dana Scott - 1981 - Journal of Symbolic Logic 46 (1):165-165.
  20.  42
    Naive Set Theory with Extensionality in Partial Logic and in Paradoxical Logic.Roland Hinnion - 1994 - Notre Dame Journal of Formal Logic 35 (1):15-40.
    Two distinct and apparently "dual" traditions of non-classical logic, three-valued logic and paraconsistent logic, are considered here and a unified presentation of "easy-to-handle" versions of these logics is given, in which full naive set theory, i.e. Frege's comprehension principle + extensionality, is not absurd.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  21. Comments on the Foundations of Set Theory.Paul J. Cohen - 1975 - Journal of Symbolic Logic 40 (3):459-460.
    Direct download  
     
    Export citation  
     
    Bookmark   18 citations  
  22.  55
    Set Theory and Its Logic.Joseph S. Ullian & Willard Van Orman Quine - 1966 - Philosophical Review 75 (3):383.
  23.  15
    Set Theory : Boolean-Valued Models and Independence Proofs: Boolean-Valued Models and Independence Proofs.John L. Bell - 2005 - Oxford University Press UK.
    This monograph is a follow up to the author's classic text Boolean-Valued Models and Independence Proofs in Set Theory, providing an exposition of some of the most important results in set theory obtained in the 20th century--the independence of the continuum hypothesis and the axiom of choice. Aimed at research students and academics in mathematics, mathematical logic, philosophy, and computer science, the text has been extensively updated with expanded introductory material, new chapters, and a new appendix on category theory, and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  24.  39
    Nested sets theory, full stop: Explaining performance on bayesian inference tasks without dual-systems assumptions.David R. Mandel - 2007 - Behavioral and Brain Sciences 30 (3):275-276.
    Consistent with Barbey & Sloman (B&S), it is proposed that performance on Bayesian inference tasks is well explained by nested sets theory (NST). However, contrary to those authors' view, it is proposed that NST does better by dispelling with dual-systems assumptions. This article examines why, and sketches out a series of NST's core principles, which were not previously defined.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  75
    A set theory with Frege-Russell cardinal numbers.Alan McMichael - 1982 - Philosophical Studies 42 (2):141 - 149.
    A frege-Russell cardinal number is a maximal class of equinumerous classes. Since anything can be numbered, A frege-Russell cardinal should contain classes whose members are cardinal numbers. This is not possible in standard set theories, Since it entails that some classes are members of members of themselves. However, A consistent set theory can be constructed in which such membership circles are allowed and in which, Consequently, Genuine frege-Russell cardinals can be defined.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26.  24
    Conservativity of Transitive Closure over weak operational set theory.Laura Crosilla & Andrea Cantini - 2012 - In Ulrich Berger, Hannes Diener, Peter Schuster & Monika Seisenberger (eds.), Logic, Construction, Computation. De Gruyter.
    Constructive set theory a' la Myhill-Aczel has been extended in (Cantini and Crosilla 2008, Cantini and Crosilla 2010) to incorporate a notion of (partial, non--extensional) operation. Constructive operational set theory is a constructive and predicative analogue of Beeson's Inuitionistic set theory with rules and of Feferman's Operational set theory (Beeson 1988, Feferman 2006, Jaeger 2007, Jaeger 2009, Jaeger 1009b). This paper is concerned with an extension of constructive operational set theory (Cantini and Crosilla 2010) by a uniform operation of Transitive (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  27. (1 other version)Naive Set Theory.Paul R. Halmos & Patrick Suppes - 1961 - Synthese 13 (1):86-87.
    No categories
     
    Export citation  
     
    Bookmark   53 citations  
  28. Causal Set Theory and Growing Block? Not Quite.Marco Forgione - manuscript
    In this contribution, I explore the possibility of characterizing the emergence of time in causal set theory (CST) in terms of the growing block universe (GBU) metaphysics. I show that although GBU seems to be the most intuitive time metaphysics for CST, it leaves us with a number of interpretation problems, independently of which dynamics we choose to favor for the theory —here I shall consider the Classical Sequential Growth and the Covariant model. Discrete general covariance of the CSG dynamics (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  29. Foundations of Set Theory.Abraham Adolf Fraenkel & Yehoshua Bar-Hillel - 1973 - Atlantic Highlands, NJ, USA: Elsevier.
    Foundations of Set Theory discusses the reconstruction undergone by set theory in the hands of Brouwer, Russell, and Zermelo. Only in the axiomatic foundations, however, have there been such extensive, almost revolutionary, developments. This book tries to avoid a detailed discussion of those topics which would have required heavy technical machinery, while describing the major results obtained in their treatment if these results could be stated in relatively non-technical terms. This book comprises five chapters and begins with a discussion of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   104 citations  
  30. (1 other version)Modal set theory.Christopher Menzel - 2018 - In Otávio Bueno & Scott A. Shalkowski (eds.), The Routledge Handbook of Modality. New York: Routledge.
    This article presents an overview of the basic philosophical motivations for, and some recent work in, modal set theory.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  32. Basic Set Theory.John L. Bell - unknown
    to indicate that the object a is an element or member of the class A. We assume that every member of a class is an object. Lower-case letters a, b, c, x, y, z, … will always denote objects, and later, sets. Equality between classes is governed by the Axiom of Extensionality.
     
    Export citation  
     
    Bookmark  
  33.  30
    On a positive set theory with inequality.Giacomo Lenzi - 2011 - Mathematical Logic Quarterly 57 (5):474-480.
    We introduce a quite natural Frege-style set theory, which we call Strong-Frege-2 equation image, a sort of simplification of the theory considered in 13 and 1 . We give a model of a weaker variant of equation image, called equation image, where atoms and coatoms are allowed. To construct the model we use an enumeration “almost without repetitions” of the Π11 sets of natural numbers; such an enumeration can be obtained via a classical priority argument much in the style of (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  34.  35
    On topological set theory.Thierry Libert & Olivier Esser - 2005 - Mathematical Logic Quarterly 51 (3):263-273.
    This paper is concerned with topological set theory, and particularly with Skala's and Manakos' systems for which we give a topological characterization of the models. This enables us to answer natural questions about those theories, reviewing previous results and proving new ones. One of these shows that Skala's set theory is in a sense compatible with any ‘normal’ set theory, and another appears on the semantic side as a ‘Cantor theorem’ for the category of Alexandroff spaces.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  35.  72
    A Logical Foundation for Potentialist Set Theory.Sharon Berry - 2022 - Cambridge University Press.
    In many ways set theory lies at the heart of modern mathematics, and it does powerful work both philosophical and mathematical – as a foundation for the subject. However, certain philosophical problems raise serious doubts about our acceptance of the axioms of set theory. In a detailed and original reassessment of these axioms, Sharon Berry uses a potentialist approach to develop a unified determinate conception of set-theoretic truth that vindicates many of our intuitive expectations regarding set theory. Berry further defends (...)
    Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  36. Ontology, Set Theory, and the Paraphrase Challenge.Jared Warren - 2021 - Journal of Philosophical Logic 50 (6):1231-1248.
    In many ontological debates there is a familiar challenge. Consider a debate over X s. The “small” or anti-X side tries to show that they can paraphrase the pro-X or “big” side’s claims without any loss of expressive power. Typically though, when the big side adds whatever resources the small side used in their paraphrase, the symmetry breaks down. The big side plus small’s resources is a more expressively powerful and thus more theoretically fruitful theory. In this paper, I show (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  42
    The Set-theoretic Multiverse : A Natural Context for Set Theory.Joel David Hamkins - 2011 - Annals of the Japan Association for Philosophy of Science 19:37-55.
  38.  99
    Set Theory and Its Philosophy: A Critical Introduction.Stewart Shapiro - 2005 - Mind 114 (455):764-767.
  39. Set theory and the continuum hypothesis.Paul J. Cohen - 1966 - New York,: W. A. Benjamin.
    This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   105 citations  
  40. Interpreting set theory in ordinary thinking: Concept calculus.Harvey Friedman - manuscript
    STARTLING OBSERVATION. Any two natural theories S,T, known to interpret EFA, are known (with small numbers of exceptions) to have: S is interpretable in T or T is interpretable in S. The exceptions are believed to also have comparability.
     
    Export citation  
     
    Bookmark  
  41. Set Theory, Type Theory, and Absolute Generality.Salvatore Florio & Stewart Shapiro - 2014 - Mind 123 (489):157-174.
    In light of the close connection between the ontological hierarchy of set theory and the ideological hierarchy of type theory, Øystein Linnebo and Agustín Rayo have recently offered an argument in favour of the view that the set-theoretic universe is open-ended. In this paper, we argue that, since the connection between the two hierarchies is indeed tight, any philosophical conclusions cut both ways. One should either hold that both the ontological hierarchy and the ideological hierarchy are open-ended, or that neither (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  42.  9
    Petrification in Contemporary Set Theory: The Multiverse and the Later Wittgenstein.José Antonio Pérez-Escobar, Colin Jakob Rittberg & Deniz Sarikaya - forthcoming - Kriterion – Journal of Philosophy.
    This paper has two aims. First, we argue that Wittgenstein’s notion of petrification can be used to explain phenomena in advanced mathematics, sometimes better than more popular views on mathematics, such as formalism, even though petrification usually suffers from a diet of examples of a very basic nature (in particular a focus on addition of small numbers). Second, we analyse current disagreements on the absolute undecidability of CH under the notion of petrification and hinge epistemology. We argue that in contemporary (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  86
    Slim models of zermelo set theory.A. R. D. Mathias - 2001 - Journal of Symbolic Logic 66 (2):487-496.
    Working in Z + KP, we give a new proof that the class of hereditarily finite sets cannot be proved to be a set in Zermelo set theory, extend the method to establish other failures of replacement, and exhibit a formula Φ(λ, a) such that for any sequence $\langle A_{\lambda} \mid \lambda \text{a limit ordinal} \rangle$ where for each $\lambda, A_{\lambda} \subseteq ^{\lambda}2$ , there is a supertransitive inner model of Zermelo containing all ordinals in which for every λ A (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  44.  13
    Logical Foundations of Set Theory and Mathematics.Mary Tiles - 2002 - In Dale Jacquette (ed.), A Companion to Philosophical Logic. Malden, MA, USA: Wiley-Blackwell. pp. 365–376.
    This chapter contains sections titled: Foundations and Logical Foundations Foundations for Mathematics Mathematics and Set Theory Sets, Classes, and Logic.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  45.  81
    A Formalization of Set Theory Without Variables.István Németi - 1988 - American Mathematical Soc..
    Completed in 1983, this work culminates nearly half a century of the late Alfred Tarski's foundational studies in logic, mathematics, and the philosophy of science. Written in collaboration with Steven Givant, the book appeals to a very broad audience, and requires only a familiarity with first-order logic. It is of great interest to logicians and mathematicians interested in the foundations of mathematics, but also to philosophers interested in logic, semantics, algebraic logic, or the methodology of the deductive sciences, and to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   47 citations  
  46.  27
    Finiteness classes arising from Ramsey-theoretic statements in set theory without choice.Joshua Brot, Mengyang Cao & David Fernández-Bretón - 2021 - Annals of Pure and Applied Logic 172 (6):102961.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  47. (1 other version)Second order logic or set theory?Jouko Väänänen - 2012 - Bulletin of Symbolic Logic 18 (1):91-121.
    We try to answer the question which is the “right” foundation of mathematics, second order logic or set theory. Since the former is usually thought of as a formal language and the latter as a first order theory, we have to rephrase the question. We formulate what we call the second order view and a competing set theory view, and then discuss the merits of both views. On the surface these two views seem to be in manifest conflict with each (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  48.  37
    A lattice-valued set theory.Satoko Titani - 1999 - Archive for Mathematical Logic 38 (6):395-421.
    A lattice-valued set theory is formulated by introducing the logical implication $\to$ which represents the order relation on the lattice.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  49.  24
    Lifting proof theory to the countable ordinals: Zermelo-Fraenkel set theory.Toshiyasu Arai - 2014 - Journal of Symbolic Logic 79 (2):325-354.
  50.  85
    Natural models of Ackermann's set theory.Rudolf Grewe - 1969 - Journal of Symbolic Logic 34 (3):481-488.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   6 citations  
1 — 50 / 933