Order:
  1.  22
    Addressing the cosmological $$H_0$$ tension by the Heisenberg uncertainty.Salvatore Capozziello, Micol Benetti & Alessandro D. A. M. Spallicci - 2020 - Foundations of Physics 50 (9):893-899.
    The uncertainty on measurements, given by the Heisenberg principle, is a quantum concept usually not taken into account in General Relativity. From a cosmological point of view, several authors wonder how such a principle can be reconciled with the Big Bang singularity, but, generally, not whether it may affect the reliability of cosmological measurements. In this letter, we express the Compton mass as a function of the cosmological redshift. The cosmological application of the indetermination principle unveils the differences of the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  50
    Aims and Scopes of the Special Issue: Foundations of Astrophysics and Cosmology.Alessandro D. A. M. Spallicci, Tomislav Prokopec & Salvatore Capozziello - 2017 - Foundations of Physics 47 (6):709-710.
  3.  24
    The Heisenberg Limit at Cosmological Scales.Salvatore Capozziello, Micol Benetti & Alessandro D. A. M. Spallicci - 2022 - Foundations of Physics 52 (1):1-9.
    For an observation time equal to the universe age, the Heisenberg principle fixes the value of the smallest measurable mass at mH=1.35×10-69\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\mathrm{H}=1.35 \times 10^{-69}$$\end{document} kg and prevents to probe the masslessness for any particle using a balance. The corresponding reduced Compton length to mH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\mathrm{H}$$\end{document} is, and represents the length limit beyond which masslessness cannot be proved using a metre ruler. In turns, is (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark