Results for 'Peano axioms'

950 found
Order:
  1.  21
    On the (In)Dependence of the Peano Axioms for Natural Numbers.Márcia R. Cerioli, Hugo Nobrega, Guilherme Silveira & Petrucio Viana - 2021 - History and Philosophy of Logic 43 (1):51-69.
    We investigate two notions of independence— independence and complete independence—applied to the Peano axioms for the sequence of natural numbers. We review the results that, although they...
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  2. Chapter 4: The Peano Axioms.Philip Hugly & Charles Sayward - 2006 - Poznan Studies in the Philosophy of the Sciences and the Humanities 90:105-128.
     
    Export citation  
     
    Bookmark  
  3.  20
    Peano's axioms in their historical context.Michael Segre - 1994 - Archive for History of Exact Sciences 48 (3-4):201-342.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  4.  89
    Which set existence axioms are needed to prove the cauchy/peano theorem for ordinary differential equations?Stephen G. Simpson - 1984 - Journal of Symbolic Logic 49 (3):783-802.
    We investigate the provability or nonprovability of certain ordinary mathematical theorems within certain weak subsystems of second order arithmetic. Specifically, we consider the Cauchy/Peano existence theorem for solutions of ordinary differential equations, in the context of the formal system RCA 0 whose principal axioms are ▵ 0 1 comprehension and Σ 0 1 induction. Our main result is that, over RCA 0 , the Cauchy/Peano Theorem is provably equivalent to weak Konig's lemma, i.e. the statement that every (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  5.  48
    Giuseppe Peano and his School: Axiomatics, Symbolism and Rigor.Paola Cantù & Erika Luciano - 2021 - Philosophia Scientiae 25:3-14.
    Peano’s axioms for arithmetic, published in 1889, are ubiquitously cited in writings on modern axiomatics, and his Formulario is often quoted as the precursor of Russell’s Principia Mathematica. Yet, a comprehensive historical and philosophical evaluation of the contributions of the Peano School to mathematics, logic, and the foundation of mathematics remains to be made. In line with increased interest in the philosophy of mathematics for the investigation of mathematical practices, this them...
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  33
    Skolem Th.. Peano's axioms and models of arithmetic. Mathematical Interpretation of formal systems, Studies in logic and the foundations of mathematics, North-Holland Publishing Company, Amsterdam 1955, pp. 1–14. [REVIEW]Solomon Feferman - 1957 - Journal of Symbolic Logic 22 (3):306-306.
  7.  33
    Initial Segments of Models of Peano's Axioms.L. A. S. Kirby, J. B. Paris, A. Lachlan, M. Srebrny & A. Zarach - 1983 - Journal of Symbolic Logic 48 (2):482-483.
  8.  83
    The independence of peano's fourth axiom from Martin-löf's type theory without universes.Jan M. Smith - 1988 - Journal of Symbolic Logic 53 (3):840-845.
  9.  39
    Peano arithmetic as axiomatization of the time frame in logics of programs and in dynamic logics.Balázs Biró & Ildikó Sain - 1993 - Annals of Pure and Applied Logic 63 (3):201-225.
    Biró, B. and I. Sain, Peano arithmetic as axiomatization of the time frame in logics of programs and in dynamic logics, Annals of Pure and Applied Logic 63 201-225. We show that one can prove the partial correctness of more programs using Peano's axioms for the time frames of three-sorted time models than using only Presburger's axioms, that is it is useful to allow multiplication of time points at program verification and in dynamic and temporal logics. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  10. The Theorem of Matijasevic is Provable in Peano's Arithmetic by Finitely Many Axioms.Carstens Hg - 1977 - Logique Et Analyse 20 (77-78):116-121.
  11. Sub-Theory of Peano Arithmetic.Andrew Boucher - unknown
    The system called F is essentially a sub-theory of Frege Arithmetic without the ad infinitum assumption that there is always a next number. In a series of papers (Systems for a Foundation of Arithmetic, True” Arithmetic Can Prove Its Own Consistency and Proving Quadratic Reciprocity) it was shown that F proves a large number of basic arithmetic truths, such as the Euclidean Algorithm, Unique Prime Factorization (i.e. the Fundamental Law of Arithmetic), and Quadratic Reciprocity, indeed a sizable amount of arithmetic. (...)
     
    Export citation  
     
    Bookmark  
  12.  38
    Peano’s structuralism and the birth of formal languages.Joan Bertran-San-Millán - 2022 - Synthese 200 (4):1-34.
    Recent historical studies have investigated the first proponents of methodological structuralism in late nineteenth-century mathematics. In this paper, I shall attempt to answer the question of whether Peano can be counted amongst the early structuralists. I shall focus on Peano’s understanding of the primitive notions and axioms of geometry and arithmetic. First, I shall argue that the undefinability of the primitive notions of geometry and arithmetic led Peano to the study of the relational features of the (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13.  29
    Axiomatizations of Peano Arithmetic: A Truth-Theoretic View.Ali Enayat & Mateusz Łełyk - 2023 - Journal of Symbolic Logic 88 (4):1526-1555.
    We employ the lens provided by formal truth theory to study axiomatizations of Peano Arithmetic ${\textsf {(PA)}}$. More specifically, let Elementary Arithmetic ${\textsf {(EA)}}$ be the fragment $\mathsf {I}\Delta _0 + \mathsf {Exp}$ of ${\textsf {PA}}$, and let ${\textsf {CT}}^-[{\textsf {EA}}]$ be the extension of ${\textsf {EA}}$ by the commonly studied axioms of compositional truth ${\textsf {CT}}^-$. We investigate both local and global properties of the family of first order theories of the form ${\textsf {CT}}^-[{\textsf {EA}}] +\alpha $, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  14.  29
    Interpretability suprema in Peano Arithmetic.Paula Henk & Albert Visser - 2017 - Archive for Mathematical Logic 56 (5-6):555-584.
    This paper develops the philosophy and technology needed for adding a supremum operator to the interpretability logic ILM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}ILM\mathsf {ILM}\end{document} of Peano Arithmetic. It is well-known that any theories extending PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}PA\mathsf {PA}\end{document} have a supremum in the interpretability ordering. While provable in PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}PA\mathsf {PA}\end{document}, this fact is not reflected in the theorems of the (...)
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  59
    Abstraction and Intuition in Peano's Axiomatizations of Geometry.Davide Rizza - 2009 - History and Philosophy of Logic 30 (4):349-368.
    Peano's axiomatizations of geometry are abstract and non-intuitive in character, whereas Peano stresses his appeal to concrete spatial intuition in the choice of the axioms. This poses the problem of understanding the interrelationship between abstraction and intuition in his geometrical works. In this article I argue that axiomatization is, for Peano, a methodology to restructure geometry and isolate its organizing principles. The restructuring produces a more abstract presentation of geometry, which does not contradict its intuitive content (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  16.  54
    Why Axiomatize Arithmetic?Charles Sayward - 2005 - Sorites 16:54-61.
    This is a dialogue in the philosophy of mathematics that focuses on these issues: Are the Peano axioms for arithmetic epistemologically irrelevant? What is the source of our knowledge of these axioms? What is the epistemological relationship between arithmetical laws and the particularities of number?
    Direct download  
     
    Export citation  
     
    Bookmark  
  17.  67
    Remarks on Peano Arithmetic.Charles Sayward - 2000 - Russell: The Journal of Bertrand Russell Studies 20 (1):27-32.
    Russell held that the theory of natural numbers could be derived from three primitive concepts: number, successor and zero. This leaves out multiplication and addition. Russell introduces these concepts by recursive definition. It is argued that this does not render addition or multiplication any less primitive than the other three. To this it might be replied that any recursive definition can be transformed into a complete or explicit definition with the help of a little set theory. But that is a (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  18.  27
    On axiom schemes for T-provably Δ1{\Delta_{1}} Δ 1 formulas.A. Cordón-Franco, A. Fernández-Margarit & F. F. Lara-Martín - 2014 - Archive for Mathematical Logic 53 (3):327-349.
    This paper investigates the status of the fragments of Peano Arithmetic obtained by restricting induction, collection and least number axiom schemes to formulas which are Δ1{\Delta_1} provably in an arithmetic theory T. In particular, we determine the provably total computable functions of this kind of theories. As an application, we obtain a reduction of the problem whether IΔ0+¬exp{I\Delta_0 + \neg \mathit{exp}} implies BΣ1{B\Sigma_1} to a purely recursion-theoretic question.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19.  51
    Kirby L. A. S. and Paris J. B.. Initial segments of models of Peano's axioms. Set theory and hierarchy theory V, Bierutowice, Poland 1976, edited by Lachlan A., Srebrny M., and Zarach A., Lecture notes in mathematics, vol. 619, Springer-Verlag, Berlin, Heidelberg, and New York, 1977, pp. 211–226.Paris J. B.. Some independence results for Peano arithmetic. [REVIEW]Stephen G. Simpson - 1983 - Journal of Symbolic Logic 48 (2):482-483.
  20.  29
    On Overspill Principles and Axiom Schemes for Bounded Formulas.Joaquín Borrego-Díaz, Alejandro Fernández-Margarit & Mario Pérez-Jiménez - 1996 - Mathematical Logic Quarterly 42 (1):341-348.
    We study the theories I∇n, L∇n and overspill principles for ∇n formulas. We show that IEn ⇒ L∇n ⇒ I∇n, but we do not know if I∇n L∇n. We introduce a new scheme, the growth scheme Crγ, and we prove that L∇n ⇒ Cr∇n⇒ I∇n. Also, we analyse the utility of bounded collection axioms for the study of the above theories.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  21.  16
    An Epistemological View of the Peano School Axiomatics.Paola Cantù - 2024 - In Antonio Piccolomini D'Aragona, Perspectives on Deduction: Contemporary Studies in the Philosophy, History and Formal Theories of Deduction. Springer Verlag. pp. 323-343.
    The paper advocates an epistemological interpretation of the Peano School axiomatics. The construction of axiom systems is presented as a cognitive enterprise unveiling the internal dynamics, evolution, and architecture of axiomatic systems as well as connections to applications. This approach reveals that the study of the relation between axioms and theorems not only serves to reduce a theory to a minimum number of principles and increase the certainty or justification of the latter, but also to study alternative settings (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  22. A Logical Foundation of Arithmetic.Joongol Kim - 2015 - Studia Logica 103 (1):113-144.
    The aim of this paper is to shed new light on the logical roots of arithmetic by presenting a logical framework that takes seriously ordinary locutions like ‘at least n Fs’, ‘n more Fs than Gs’ and ‘n times as many Fs as Gs’, instead of paraphrasing them away in terms of expressions of the form ‘the number of Fs’. It will be shown that the basic concepts of arithmetic can be intuitively defined in the language of ALA, and the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  23. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24. Aristotelian logic, axioms, and abstraction.Roy T. Cook - 2003 - Philosophia Mathematica 11 (2):195-202.
    Stewart Shapiro and Alan Weir have argued that a crucial part of the demonstration of Frege's Theorem (specifically, that Hume's Principle implies that there are infinitely many objects) fails if the Neo-logicist cannot assume the existence of the empty property, i.e., is restricted to so-called Aristotelian Logic. Nevertheless, even in the context of Aristotelian Logic, Hume's Principle implies much of the content of Peano Arithmetic. In addition, their results do not constitute an objection to Neo-logicism so much as a (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  25. The Gödel Incompleteness Theorems (1931) by the Axiom of Choice.Vasil Penchev - 2020 - Econometrics: Mathematical Methods and Programming eJournal (Elsevier: SSRN) 13 (39):1-4.
    Those incompleteness theorems mean the relation of (Peano) arithmetic and (ZFC) set theory, or philosophically, the relation of arithmetical finiteness and actual infinity. The same is managed in the framework of set theory by the axiom of choice (respectively, by the equivalent well-ordering "theorem'). One may discuss that incompleteness form the viewpoint of set theory by the axiom of choice rather than the usual viewpoint meant in the proof of theorems. The logical corollaries from that "nonstandard" viewpoint the relation (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  26. Natural Deduction: The Logical Basis of Axiom Systems. [REVIEW]D. J. P. - 1963 - Review of Metaphysics 17 (1):141-142.
    Here is a deft and new introduction to Gentzen proof techniques in axiom systems and to the analysis of formal axiom systems; in short, axiomatics inside and out. Treating of deduction in propositional and predicate logic, metatheoretical problems about both set theory and its paradoxes, the book is flexibly structured for selective use as a text. Yet the discussion is unified and motivated by the concept of the axiomatic system--the history of its use and analysis, and its present practical and (...)
     
    Export citation  
     
    Bookmark  
  27.  19
    (1 other version)Provability multilattice logic.Yaroslav Petrukhin - 2022 - Journal of Applied Non-Classical Logics 32 (4):239-272.
    In this paper, we introduce provability multilattice logic PMLn and multilattice arithmetic MPAn which extends first-order multilattice logic with equality by multilattice versions of Peano axioms. We show that PMLn has the provability interpretation with respect to MPAn and prove the arithmetic completeness theorem for it. We formulate PMLn in the form of a nested sequent calculus and show that cut is admissible in it. We introduce the notion of a provability multilattice and develop algebraic semantics for PMLn (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29. Computational Structuralism &dagger.Volker Halbach & Leon Horsten - 2005 - Philosophia Mathematica 13 (2):174-186.
    According to structuralism in philosophy of mathematics, arithmetic is about a single structure. First-order theories are satisfied by models that do not instantiate this structure. Proponents of structuralism have put forward various accounts of how we succeed in fixing one single structure as the intended interpretation of our arithmetical language. We shall look at a proposal that involves Tennenbaum's theorem, which says that any model with addition and multiplication as recursive operations is isomorphic to the standard model of arithmetic. On (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  30. Possible predicates and actual properties.Roy T. Cook - 2019 - Synthese 196 (7):2555-2582.
    In “Properties and the Interpretation of Second-Order Logic” Bob Hale develops and defends a deflationary conception of properties where a property with particular satisfaction conditions actually exists if and only if it is possible that a predicate with those same satisfaction conditions exists. He argues further that, since our languages are finitary, there are at most countably infinitely many properties and, as a result, the account fails to underwrite the standard semantics for second-order logic. Here a more lenient version of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  31. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32.  87
    Arithmetic based on the church numerals in illative combinatory logic.M. W. Bunder - 1988 - Studia Logica 47 (2):129 - 143.
    In the early thirties, Church developed predicate calculus within a system based on lambda calculus. Rosser and Kleene developed Arithmetic within this system, but using a Godelization technique showed the system to be inconsistent.Alternative systems to that of Church have been developed, but so far more complex definitions of the natural numbers have had to be used. The present paper based on a system of illative combinatory logic developed previously by the author, does allow the use of the Church numerals. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  33.  66
    Learning natural numbers is conceptually different than learning counting numbers.Dwight Read - 2008 - Behavioral and Brain Sciences 31 (6):667-668.
    How children learn number concepts reflects the conceptual and logical distinction between counting numbers, based on a same-size concept for collections of objects, and natural numbers, constructed as an algebra defined by the Peano axioms for arithmetic. Cross-cultural research illustrates the cultural specificity of counting number systems, and hence the cultural context must be taken into account.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  34.  32
    Maximum Schemes in Arithmetic.A. Fernández-Margarit & M. J. Pérez-Jiménez - 1994 - Mathematical Logic Quarterly 40 (3):425-430.
    In this paper we deal with some new axiom schemes for Peano's Arithmetic that can substitute the classical induction, least-element, collection and strong collection schemes in the description of PA.
    Direct download  
     
    Export citation  
     
    Bookmark  
  35.  45
    Inconsistent Models (and Infinite Models) for Arithmetics with Constructible Falsity.Thomas Macaulay Ferguson - 2019 - Logic and Logical Philosophy 28 (3):389-407.
    An earlier paper on formulating arithmetic in a connexive logic ended with a conjecture concerning C♯, the closure of the Peano axioms in Wansing’s connexive logic C. Namely, the paper conjectured that C♯ is Post consistent relative to Heyting arithmetic, i.e., is nontrivial if Heyting arithmetic is nontrivial. The present paper borrows techniques from relevant logic to demonstrate that C♯ is Post consistent simpliciter, rendering the earlier conjecture redundant. Given the close relationship between C and Nelson’s paraconsistent N4, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Hale’s argument from transitive counting.Eric Snyder, Richard Samuels & Stewart Shapiro - 2019 - Synthese 198 (3):1905-1933.
    A core commitment of Bob Hale and Crispin Wright’s neologicism is their invocation of Frege’s Constraint—roughly, the requirement that the core empirical applications for a class of numbers be “built directly into” their formal characterization. According to these neologicists, if legitimate, Frege’s Constraint adjudicates in favor of their preferred foundation—Hume’s Principle—and against alternatives, such as the Dedekind–Peano axioms. In this paper, we consider a recent argument for legitimating Frege’s Constraint due to Hale, according to which the primary empirical (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  78
    Internal Categoricity in Arithmetic and Set Theory.Jouko Väänänen & Tong Wang - 2015 - Notre Dame Journal of Formal Logic 56 (1):121-134.
    We show that the categoricity of second-order Peano axioms can be proved from the comprehension axioms. We also show that the categoricity of second-order Zermelo–Fraenkel axioms, given the order type of the ordinals, can be proved from the comprehension axioms. Thus these well-known categoricity results do not need the so-called “full” second-order logic, the Henkin second-order logic is enough. We also address the question of “consistency” of these axiom systems in the second-order sense, that is, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  38.  52
    Number Theory and Infinity Without Mathematics.Uri Nodelman & Edward N. Zalta - 2024 - Journal of Philosophical Logic 53 (5):1161-1197.
    We address the following questions in this paper: (1) Which set or number existence axioms are needed to prove the theorems of ‘ordinary’ mathematics? (2) How should Frege’s theory of numbers be adapted so that it works in a modal setting, so that the fact that equivalence classes of equinumerous properties vary from world to world won’t give rise to different numbers at different worlds? (3) Can one reconstruct Frege’s theory of numbers in a non-modal setting without mathematical primitives (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Classes, why and how.Thomas Schindler - 2019 - Philosophical Studies 176 (2):407-435.
    This paper presents a new approach to the class-theoretic paradoxes. In the first part of the paper, I will distinguish classes from sets, describe the function of class talk, and present several reasons for postulating type-free classes. This involves applications to the problem of unrestricted quantification, reduction of properties, natural language semantics, and the epistemology of mathematics. In the second part of the paper, I will present some axioms for type-free classes. My approach is loosely based on the Gödel–Russell (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  40.  47
    Modal Structuralism with Theoretical Terms.Holger Andreas & Georg Schiemer - 2021 - Erkenntnis 88 (2):721-745.
    In this paper, we aim to explore connections between a Carnapian semantics of theoretical terms and an eliminative structuralist approach in the philosophy of mathematics. Specifically, we will interpret the language of Peano arithmetic by applying the modal semantics of theoretical terms introduced in Andreas (Synthese 174(3):367–383, 2010). We will thereby show that the application to Peano arithmetic yields a formal semantics of universal structuralism, i.e., the view that ordinary mathematical statements in arithmetic express general claims about all (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41. Learning the Natural Numbers as a Child.Stefan Buijsman - 2017 - Noûs 53 (1):3-22.
    How do we get out knowledge of the natural numbers? Various philosophical accounts exist, but there has been comparatively little attention to psychological data on how the learning process actually takes place. I work through the psychological literature on number acquisition with the aim of characterising the acquisition stages in formal terms. In doing so, I argue that we need a combination of current neologicist accounts and accounts such as that of Parsons. In particular, I argue that we learn the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  42. Neologicism, Frege's Constraint, and the Frege‐Heck Condition.Eric Snyder, Richard Samuels & Stewart Shapiro - 2018 - Noûs 54 (1):54-77.
    One of the more distinctive features of Bob Hale and Crispin Wright’s neologicism about arithmetic is their invocation of Frege’s Constraint – roughly, the requirement that the core empirical applications for a class of numbers be “built directly into” their formal characterization. In particular, they maintain that, if adopted, Frege’s Constraint adjudicates in favor of their preferred foundation – Hume’s Principle – and against alternatives, such as the Dedekind-Peano axioms. In what follows we establish two main claims. First, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  43. A Puzzle About Ontological Commitments.Philip A. Ebert - 2008 - Philosophia Mathematica 16 (2):209-226.
    This paper raises and then discusses a puzzle concerning the ontological commitments of mathematical principles. The main focus here is Hume's Principle—a statement that, embedded in second-order logic, allows for a deduction of the second-order Peano axioms. The puzzle aims to put pressure on so-called epistemic rejectionism, a position that rejects the analytic status of Hume's Principle. The upshot will be to elicit a new and very basic disagreement between epistemic rejectionism and the neo-Fregeans, defenders of the analytic (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44. The development of arithmetic in Frege's Grundgesetze der Arithmetik.Richard Heck - 1993 - Journal of Symbolic Logic 58 (2):579-601.
    Frege's development of the theory of arithmetic in his Grundgesetze der Arithmetik has long been ignored, since the formal theory of the Grundgesetze is inconsistent. His derivations of the axioms of arithmetic from what is known as Hume's Principle do not, however, depend upon that axiom of the system--Axiom V--which is responsible for the inconsistency. On the contrary, Frege's proofs constitute a derivation of axioms for arithmetic from Hume's Principle, in (axiomatic) second-order logic. Moreover, though Frege does prove (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   63 citations  
  45. Natural Numbers and Natural Cardinals as Abstract Objects: A Partial Reconstruction of Frege"s Grundgesetze in Object Theory.Edward N. Zalta - 1999 - Journal of Philosophical Logic 28 (6):619-660.
    In this paper, the author derives the Dedekind-Peano axioms for number theory from a consistent and general metaphysical theory of abstract objects. The derivation makes no appeal to primitive mathematical notions, implicit definitions, or a principle of infinity. The theorems proved constitute an important subset of the numbered propositions found in Frege's *Grundgesetze*. The proofs of the theorems reconstruct Frege's derivations, with the exception of the claim that every number has a successor, which is derived from a modal (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  46. (1 other version)Focus restored: Comments on John MacFarlane.Bob Hale & Crispin Wright - 2009 - Synthese 170 (3):457 - 482.
    In “Double Vision Two Questions about the Neo-Fregean Programme”, John MacFarlane’s raises two main questions: (1) Why is it so important to neo-Fregeans to treat expressions of the form ‘the number of Fs’ as a species of singular term? What would be lost, if anything, if they were analysed instead as a type of quantifier-phrase, as on Russell’s Theory of Definite Descriptions? and (2) Granting—at least for the sake of argument—that Hume’s Principle may be used as a means of implicitly (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  47. Real Numbers and Set theory – Extending the Neo-Fregean Programme Beyond Arithmetic.Bob Hale - 2005 - Synthese 147 (1):21-41.
    It is known that Hume’s Principle, adjoined to a suitable formulation of second-order logic, gives a theory which is almost certainly consistent4 and suffices for arithmetic in the sense that it yields the Dedekind-Peano axioms as theorems. While Hume’s Principle cannot be taken as a definition in any strict sense requiring that it provide for the eliminative paraphrase of its definiendum in every admissible type of occurrence, we hold that it can be viewed as an implicit definition of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  48.  89
    “Strenge” arithmetics.Robert K. Meyer & Greg Restall - unknown
    In Entailment, Anderson and Belnap motivated their modification E of Ackermann’s strenge Implikation Π Π’ as a logic of relevance and necessity. The kindred system R was seen as relevant but not as modal. Our systems of Peano arithmetic R# and omega arithmetic R## were based on R to avoid fallacies of relevance. But problems arose as to which arithmetic sentences were (relevantly) true. Here we base analogous systems on E to solve those problems. Central to motivating E is (...)
    Direct download  
     
    Export citation  
     
    Bookmark   21 citations  
  49.  50
    Phase transitions for Gödel incompleteness.Andreas Weiermann - 2009 - Annals of Pure and Applied Logic 157 (2-3):281-296.
    Gödel’s first incompleteness result from 1931 states that there are true assertions about the natural numbers which do not follow from the Peano axioms. Since 1931 many researchers have been looking for natural examples of such assertions and breakthroughs were obtained in the seventies by Jeff Paris [Some independence results for Peano arithmetic. J. Symbolic Logic 43 725–731] , Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977] and Laurie Kirby [L. Kirby, Jeff Paris, Accessible independence results for (...) Arithmetic, Bull. of the LMS 14 285–293]) and Harvey Friedman [S.G. Simpson, Non-provability of certain combinatorial properties of finite trees, in: Harvey Friedman’s Research on the Foundations of Mathematics, North-Holland, Amsterdam, 1985, pp. 87–117; R. Smith, The consistency strength of some finite forms of the Higman and Kruskal theorems, in: Harvey Friedman’s Research on the Foundations of Mathematics, North-Holland, Amsterdam, 1985, pp. 119–136] who produced the first mathematically interesting independence results in Ramsey theory and well-order and well-quasi-order theory .In this article we investigate Friedman-style principles of combinatorial well-foundedness for the ordinals below ε0. These principles state that there is a uniform bound on the length of decreasing sequences of ordinals which satisfy an elementary recursive growth rate condition with respect to their Gödel numbers.For these independence principles we classify their phase transitions, i.e. we classify exactly the bounding conditions which lead from provability to unprovability in the induced combinatorial well-foundedness principles.As Gödel numbering for ordinals we choose the one which is induced naturally from Gödel’s coding of finite sequences from his classical 1931 paper on his incompleteness results.This choice makes the investigation highly non-trivial but rewarding and we succeed in our objectives by using an intricate and surprising interplay between analytic combinatorics and the theory of descent recursive functions. For obtaining the required bounds on count functions for ordinals we use a classical 1961 Tauberian theorem of Parameswaran which apparently is far remote from Gödel’s theorem. (shrink)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  50. Bad company objection to Joongol Kim’s adverbial theory of numbers.Namjoong Kim - 2019 - Synthese 196 (8):3389-3407.
    Kim :1099–1112, 2013) defends a logicist theory of numbers. According to him, numbers are adverbial entities, similar to those denoted by “frequently” and “at 100 mph”. He even introduces new adverbs for numbers: “1-wise”, “2-wise”, and so on. For example, “Fs exist 2-wise” means that there are two Fs. Kim claims that, because we can derive Dedekind–Peano axioms from his definition of numbers as adverbial entities, it is a new form of logicism. In this paper, I will, however, (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 950