Order:
  1.  61
    The conjugacy problem for the automorphism group of the random graph.Samuel Coskey, Paul Ellis & Scott Schneider - 2011 - Archive for Mathematical Logic 50 (1-2):215-221.
    We prove that the conjugacy problem for the automorphism group of the random graph is Borel complete, and discuss the analogous problem for some other countably categorical structures.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  37
    The conjugacy problem for automorphism groups of countable homogeneous structures.Samuel Coskey & Paul Ellis - 2016 - Mathematical Logic Quarterly 62 (6):580-589.
    No categories
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  29
    Conjugacy for homogeneous ordered graphs.Samuel Coskey & Paul Ellis - 2019 - Archive for Mathematical Logic 58 (3-4):457-467.
    We show that for any countable homogeneous ordered graph G, the conjugacy problem for automorphisms of G is Borel complete. In fact we establish that each such G satisfies a strong extension property called ABAP, which implies that the isomorphism relation on substructures of G is Borel reducible to the conjugacy relation on automorphisms of G.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark