Results for 'Mathematical Rigor'

961 found
Order:
  1.  88
    Mathematical rigor and proof.Yacin Hamami - 2022 - Review of Symbolic Logic 15 (2):409-449.
    Mathematical proof is the primary form of justification for mathematical knowledge, but in order to count as a proper justification for a piece of mathematical knowl- edge, a mathematical proof must be rigorous. What does it mean then for a mathematical proof to be rigorous? According to what I shall call the standard view, a mathematical proof is rigorous if and only if it can be routinely translated into a formal proof. The standard view (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  2. Is mathematical rigor necessary in physics?Kevin Davey - 2003 - British Journal for the Philosophy of Science 54 (3):439-463.
    Many arguments found in the physics literature involve concepts that are not well-defined by the usual standards of mathematics. I argue that physicists are entitled to employ such concepts without rigorously defining them so long as they restrict the sorts of mathematical arguments in which these concepts are involved. Restrictions of this sort allow the physicist to ignore calculations involving these concepts that might lead to contradictory results. I argue that such restrictions need not be ad hoc, but can (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  3.  91
    Mathematical rigor, proof gap and the validity of mathematical inference.Yacin Hamami - 2014 - Philosophia Scientiae 18 (1):7-26.
    Mathematical rigor is commonly formulated by mathematicians and philosophers using the notion of proof gap: a mathematical proof is rig­orous when there is no gaps in the mathematical reasoning of the proof. Any philosophical approach to mathematical rigor along this line requires then an account of what a proof gap is. However, the notion of proof gap makes sense only relatively to a given conception of valid mathematical reasoning, i.e., to a given conception (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Mathematical rigor in physics.Mark Steiner - 1992 - In Michael Detlefsen (ed.), Proof and Knowledge in Mathematics. New York: Routledge. pp. 158.
  5.  21
    Mathematical Rigor and the Origin of the Exhaustion Method.Theokritos Kouremenos - 1997 - Centaurus 39 (3):230-252.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6. What is Mathematical Rigor?John Burgess & Silvia De Toffoli - 2022 - Aphex 25:1-17.
    Rigorous proof is supposed to guarantee that the premises invoked imply the conclusion reached, and the problem of rigor may be described as that of bringing together the perspectives of formal logic and mathematical practice on how this is to be achieved. This problem has recently raised a lot of discussion among philosophers of mathematics. We survey some possible solutions and argue that failure to understand its terms properly has led to misunderstandings in the literature.
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  7. Mathematical rigor--who needs it?Philip Kitcher - 1981 - Noûs 15 (4):469-493.
  8. Mathematical Rigor in Physics: Putting Exact Results in Their Place.Axel Gelfert - 2005 - Philosophy of Science 72 (5):723-738.
    The present paper examines the role of exact results in the theory of many‐body physics, and specifically the example of the Mermin‐Wagner theorem, a rigorous result concerning the absence of phase transitions in low‐dimensional systems. While the theorem has been shown to hold for a wide range of many‐body models, it is frequently ‘violated’ by results derived from the same models using numerical techniques. This raises the question of how scientists regulate their theoretical commitments in such cases, given that the (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  9.  14
    Some Aspects of the problem of Mathematical Rigor.Haskell B. Curry - 1941 - Journal of Symbolic Logic 6 (3):100-102.
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  10. Edmund Husserl: from the mathematical rigor to the philosophical questioning.Vanessa Donado - 2014 - Eidos: Revista de Filosofía de la Universidad Del Norte 21:127-146.
    Nobody can deny that the figure of Edmund Husserl represents the key to the philosophical horizon of our time in both version, as continental as analytical one. But, how can the same approach give ground and support to the development of such diverse topics? Although much work has been done to explain the renewed sense that science and philosophy acquire inside their proposal, the way Husserl reached that conclusion is not sufficiently clear yet. That is why in this article we (...)
     
    Export citation  
     
    Bookmark  
  11.  41
    Rigor and Clarity: Foundations of Mathematics in France and England, 1800–1840.Joan L. Richards - 1991 - Science in Context 4 (2):297-319.
    The ArgumentIt has long been apparent that in the nineteenth century, mathematics in France and England developed along different lines. The differences, which might well be labelled stylistic, are most easy to see on the foundational level. At first this may seem surprising because it is such a fundamental area, but, upon reflection, it is to be expected. Ultimately discussions about the foundations of mathematics turn on views about what mathematics is, and this is a question which is answered by (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  12.  32
    Curry Haskell B.. Some aspects of the problem of mathematical rigor. Bulletin of the American Mathematical Society, vol. 47 , pp. 221–241. [REVIEW]S. C. Kleene - 1941 - Journal of Symbolic Logic 6 (3):100-102.
  13.  76
    Rigorous proof and the history of mathematics: Comments on Crowe.Douglas Jesseph - 1990 - Synthese 83 (3):449 - 453.
    Duhem's portrayal of the history of mathematics as manifesting calm and regular development is traced to his conception of mathematical rigor as an essentially static concept. This account is undermined by citing controversies over rigorous demonstration from the eighteenth and twentieth centuries.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  14.  43
    Arithmetization and Rigor as Beliefs in the Development of Mathematics.Lorena Segura & Juan Matías Sepulcre - 2016 - Foundations of Science 21 (1):207-214.
    With the arrival of the nineteenth century, a process of change guided the treatment of three basic elements in the development of mathematics: rigour, the arithmetization and the clarification of the concept of function, categorised as the most important tool in the development of the mathematical analysis. In this paper we will show how several prominent mathematicians contributed greatly to the development of these basic elements that allowed the solid underpinning of mathematics and the consideration of mathematics as an (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  15.  51
    Rigor and Structure.John P. Burgess - 2015 - Oxford, England: Oxford University Press UK.
    While we are commonly told that the distinctive method of mathematics is rigorous proof, and that the special topic of mathematics is abstract structure, there has been no agreement among mathematicians, logicians, or philosophers as to just what either of these assertions means. John P. Burgess clarifies the nature of mathematical rigor and of mathematical structure, and above all of the relation between the two, taking into account some of the latest developments in mathematics, including the rise (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  16.  43
    Mathematical Sciences J. V. Grabiner, The origins of Cauchy's rigorous calculus. Cambridge, Mass.: M.I.T. press, 1981. Pp. x + 252. £17.50. [REVIEW]Jeremy Gray - 1983 - British Journal for the History of Science 16 (3):290-291.
  17.  43
    The Pursuit of Rigor: Hilbert's axiomatic method and the objectivity of mathematics.Yoshinori Ogawa - 2004 - Annals of the Japan Association for Philosophy of Science 12 (2):89-108.
  18.  8
    The dilemma of statistics: Rigorous mathematical methods cannot compensate messy interpretations and lousy data.Peter Schuster - 2014 - Complexity 20 (1):11-15.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  19.  22
    Rigor and formalization.Pawel Pawlowski & Karim Zahidi - 2024 - Synthese 203 (3):1-18.
    This paper critically examines and evaluates Yacin Hamami’s reconstruction of the standard view of mathematical rigor. We will argue that the reconstruction offered by Hamami is premised on a strong and controversial epistemological thesis and a strong and controversial thesis in the philosophy of mind. Secondly, we will argue that Hamami’s reconstruction of the standard view robs it of its original philosophical rationale, i.e. making sense of the notion of rigor in mathematical practice.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  19
    The Algorithmic-Device View of Informal Rigorous Mathematical Proof.Jody Azzouni - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2179-2260.
    A new approach to informal rigorous mathematical proof is offered. To this end, algorithmic devices are characterized and their central role in mathematical proof delineated. It is then shown how all the puzzling aspects of mathematical proof, including its peculiar capacity to convince its practitioners, are explained by algorithmic devices. Diagrammatic reasoning is also characterized in terms of algorithmic devices, and the algorithmic device view of mathematical proof is compared to alternative construals of informal proof to (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  21. Rigorous results, cross-model justification, and the transfer of empirical warrant: the case of many-body models in physics.Axel Gelfert - 2009 - Synthese 169 (3):497-519.
    This paper argues that a successful philosophical analysis of models and simulations must accommodate an account of mathematically rigorous results. Such rigorous results may be thought of as genuinely model-specific contributions, which can neither be deduced from fundamental theory nor inferred from empirical data. Rigorous results provide new indirect ways of assessing the success of models and simulations and are crucial to understanding the connections between different models. This is most obvious in cases where rigorous results map different models on (...)
    No categories
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  22. The Relationship of Derivations in Artificial Languages to Ordinary Rigorous Mathematical Proof.J. Azzouni - 2013 - Philosophia Mathematica 21 (2):247-254.
    The relationship is explored between formal derivations, which occur in artificial languages, and mathematical proof, which occurs in natural languages. The suggestion that ordinary mathematical proofs are abbreviations or sketches of formal derivations is presumed false. The alternative suggestion that the existence of appropriate derivations in formal logical languages is a norm for ordinary rigorous mathematical proof is explored and rejected.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  23. Proofs for a price: Tomorrow’s ultra-rigorous mathematical culture.Silvia De Toffoli - 2024 - Bulletin (New Series) of the American Mathematical Society 61 (3):395–410.
    Computational tools might tempt us to renounce complete cer- tainty. By forgoing of rigorous proof, we could get (very) probable results for a fraction of the cost. But is it really true that proofs (as we know and love them) can lead us to certainty? Maybe not. Proofs do not wear their correct- ness on their sleeve, and we are not infallible in checking them. This suggests that we need help to check our results. When our fellow mathematicians will be (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24. Reconciling Rigor and Intuition.Silvia De Toffoli - 2020 - Erkenntnis 86 (6):1783-1802.
    Criteria of acceptability for mathematical proofs are field-dependent. In topology, though not in most other domains, it is sometimes acceptable to appeal to visual intuition to support inferential steps. In previous work :829–842, 2014; Lolli, Panza, Venturi From logic to practice, Springer, Berlin, 2015; Larvor Mathematical cultures, Springer, Berlin, 2016) my co-author and I aimed at spelling out how topological proofs work on their own terms, without appealing to formal proofs which might be associated with them. In this (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  25.  14
    Rigorous Purposes of Analysis in Greek Geometry.Viktor Blåsjö - 2021 - Philosophia Scientiae 25:55-80.
    Analyses in Greek geometry are traditionally seen as heuristic devices. However, many occurrences of analysis in formal treatises are difficult to justify in such terms. I show that Greek analysies of geometrics can also serve formal mathematical purposes, which are arguably incomplete without which their associated syntheses are arguably incomplete. Firstly, when the solution of a problem is preceded by an analysis, the analysis latter proves rigorously that there are no other solutions to the problem than those offered in (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  26
    O rigor científico: princípios elementares extraídos de Aristóteles no interesse da teologia.Clodovis Boff - 2015 - Horizonte 13 (39):1559-1579.
    Against the modern tendency to considerate just the formal-empirical knowledge as Science, and this one mathematized as much as possible, here many declarations of Aristotle are raised in order to show that the scientific rigour is not univocal but analogic: it is determined according to the nature of the object to be known. This is a so elementary epistemological rule that not knowing it is understood by that philosopher as apaideusia, i.e., lack of basic education in the knowledge sphere in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  27. The'theorie Des fonctions analytiques'of lagrange and the problem of being rigorous in demonstrations of mathematical-analysis.A. Moretto - 1991 - Verifiche: Rivista Trimestrale di Scienze Umane 20 (1-2):83-122.
  28. Rigorous information-theoretic derivation of quantum-statistical thermodynamics. II.William Band & James L. Park - 1977 - Foundations of Physics 7 (9-10):705-721.
    Part I of the present work outlined the rigorous application of information theory to a quantum mechanical system in a thermodynamic equilibrium state. The general formula developed there for the best-guess density operator $\hat \rho$ was indeterminate because it involved in an essential way an unspecified prior probability distribution over the continuumD H of strong equilibrium density operators. In Part II mathematical evaluation of $\hat \rho$ is completed after an epistemological analysis which leads first to the discretization ofD H (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29.  19
    Axioms of Infinity as the Starting Point for Rigorous Mathematics.John P. Burgess - 2012 - Annals of the Japan Association for Philosophy of Science 20:17-28.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  30.  54
    (1 other version)Mathematics and plausible reasoning.George Pólya - 1968 - Princeton, N.J.,: Princeton University Press.
    2014 Reprint of 1954 American Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. This two volume classic comprises two titles: "Patterns of Plausible Inference" and "Induction and Analogy in Mathematics." This is a guide to the practical art of plausible reasoning, particularly in mathematics, but also in every field of human activity. Using mathematics as the example par excellence, Polya shows how even the most rigorous deductive discipline is heavily dependent on techniques of guessing, inductive (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   79 citations  
  31.  15
    Does mathematical study develop logical thinking?: testing the theory of formal discipline.Matthew Inglis - 2016 - New Jersey: World Scientific. Edited by Nina Attridge.
    "This book is interesting and well-written. The research methods were explained clearly and conclusions were summarized nicely. It is a relatively quick read at only 130 pages. Anyone who has been told, or who has told others, that mathematicians make better thinkers should read this book." MAA Reviews "The authors particularly attend to protecting positive correlations against the self-selection interpretation, merely that logical minds elect studying more mathematics. Here, one finds a stimulating survey of the systemic difficulties people have with (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  44
    Defining ecology: Ecological theories, mathematical models, and applied biology in the 1960s and 1970s.Paolo Palladino - 1991 - Journal of the History of Biology 24 (2):223 - 243.
    Ever since the early decades of this century, there have emerged a number of competing schools of ecology that have attempted to weave the concepts underlying natural resource management and natural-historical traditions into a formal theoretical framework. It was widely believed that the discovery of the fundamental mechanisms underlying ecological phenomena would allow ecologists to articulate mathematically rigorous statements whose validity was not predicated on contingent factors. The formulation of such statements would elevate ecology to the standing of a rigorous (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  33.  9
    Mathematics of relativity.George Yuri Rainich - 1950 - New York,: Wiley.
    Based on the ideas of Einstein and Minkowski, this concise treatment is derived from the author's many years of teaching the mathematics of relativity at the University of Michigan. Geared toward advanced undergraduates and graduate students of physics, the text covers old physics, new geometry, special relativity, curved space, and general relativity. Beginning with a discussion of the inverse square law in terms of simple calculus, the treatment gradually introduces increasingly complicated situations and more sophisticated mathematical tools. Changes in (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  31
    On the Mathematical Method and Correspondence with Exner.Bernard Bolzano (ed.) - 2004 - Rodopi.
    The Prague Philosopher Bernard Bolzano (1781-1848) has long been admired for his groundbreaking work in mathematics: his rigorous proofs of fundamental theorems in analysis, his construction of a continuous, nowhere-differentiable function, his investigations of the infinite, and his anticipations of Cantor's set theory. He made equally outstanding contributions in philosophy, most notably in logic and methodology. One of the greatest mathematician-philosophers since Leibniz, Bolzano is now widely recognised as a major figure of nineteenth-century philosophy. Praised by Husserl as "one of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  35.  43
    The Logic for Mathematics without Ex Falso Quodlibet.Neil Tennant - 2024 - Philosophia Mathematica 32 (2):177-215.
    Informally rigorous mathematical reasoning is relevant. So too should be the premises to the conclusions of formal proofs that regiment it. The rule Ex Falso Quodlibet induces spectacular irrelevance. We therefore drop it. The resulting systems of Core Logic $ \mathbb{C}$ and Classical Core Logic $ \mathbb{C}^{+}$ can formalize all the informally rigorous reasoning in constructive and classical mathematics respectively. We effect a revised match-up between deducibility in Classical Core Logic and a new notion of relevant logical consequence. It (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36. Mature Intuition and Mathematical Understanding.William D'Alessandro & Irma Stevens - forthcoming - Journal of Mathematical Behavior.
    Mathematicians often describe the importance of well-developed intuition to productive research and successful learning. But neither education researchers nor philosophers interested in epistemic dimensions of mathematical practice have yet given the topic the sustained attention it deserves. The trouble is partly that intuition in the relevant sense lacks a usefully clear characterization, so we begin by offering one: mature intuition, we say, is the capacity for fast, fluent, reliable and insightful inference with respect to some subject matter. We illustrate (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  37.  9
    Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics.G. F. Roach, I. G. Stratis & A. N. Yannacopoulos - 2012 - Princeton University Press.
    But a body of rigorous mathematical theory has also gradually developed, and this is the first book to present that theory.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  38.  32
    Toward a rigorous quantum field theory.Stanley Gudder - 1994 - Foundations of Physics 24 (9):1205-1225.
    This paper outlines a framework that may provide a mathematically rigorous quantum field theory. The framework relies upon the methods of nonstandard analysis. A theory of nonstandard inner product spaces and operators on these spaces is first developed. This theory is then applied to construct nonstandard Fock spaces which extend the standard Fock spaces. Then a rigorous framework for the field operators of quantum field theory is presented. The results are illustrated for the case of Klein-Gordon fields.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39.  23
    A mathematical assessment on the ontology of time.Jorge Julian Sanchez Martinez - 2020 - Science and Philosophy 8 (2):91-104.
    In this work, we develop and propose an ontological formal definition of time, based on a topological analysis of the formal mathematical description of time, coming from approaches to both quantum theories and Relativity; thus, being compatible with all physical epistemological theories. We find out a mathematical topological invariability, thus establishing a rigorous definition of time, as fundamental generic magnitude. Very preliminary analysis of physical epistemology is provided; likely highlighting a path towards a final common vision between Quantum (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  40.  25
    Objectivity and Rigor in Classical Italian Algebraic Geometry.Silvia De Fontanari Toffoli - 2024 - Noesis 38:195-212.
    The classification of algebraic surfaces by the Italian School of algebraic geometry is universally recognized as a breakthrough in 20th century mathematics. The methods by which it was achieved do not, however, meet the modern standard of rigor and therefore appear dubious from a contemporary viewpoint. In this article, we offer a glimpse into the mathematical practice of the three leading exponents of the Italian School of algebraic geometry: Castelnuovo, Enriques, and Severi. We then bring into focus their (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  33
    Abel and his mathematics in contexts.Henrik Kragh Sørensen - 2002 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 10 (1):137-155.
    200 years ago, on August 5, 1802, Niels Henrik Abel was born on Finnøy near Stavanger on the Norwegian west coast. During a short life span, Abel contributed to a deep transition in mathematics in which concepts replaced formulae as the basic objects of mathematics. The transformation of mathematics in the 1820s and its manifestation in Abel’s works are the themes of the author’s PhD thesis. After sketching the formative instances in Abel’s well-known biography, this article illustrates two aspects of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  42.  27
    Mathematical Structure Applied to Metaethical Dialectics.Deborah C. Arangno & Lorraine Marie Arangno - 2022 - Philosophia 50 (4):1563-1577.
    This paper seeks to utilize mathematical methods to formally define and analyze the metaethical theory that is ethical reductionism. In contemporary metaethics, realist-antirealist debates center on the ontology of moral properties. Our research reflects an innovative methodology using methods from Graph Theory to clarify a debated position of Meta-Ethics, previously encumbered by intrinsic vagueness and ambiguity. We employ rigorous mathematical formalism to symbolize, parse, and thus disambiguate, particular philosophical questions regarding ethical ontological materialism of the reductionist variety. In (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  43.  28
    Mathematical Basis of Predicting Dominant Function in Protein Sequences by a Generic HMM–ANN Algorithm.Siddhartha Kundu - 2018 - Acta Biotheoretica 66 (2):135-148.
    The accurate annotation of an unknown protein sequence depends on extant data of template sequences. This could be empirical or sets of reference sequences, and provides an exhaustive pool of probable functions. Individual methods of predicting dominant function possess shortcomings such as varying degrees of inter-sequence redundancy, arbitrary domain inclusion thresholds, heterogeneous parameterization protocols, and ill-conditioned input channels. Here, I present a rigorous theoretical derivation of various steps of a generic algorithm that integrates and utilizes several statistical methods to predict (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  13
    The Mathematical Bases for the Creation of a Homogenous 5D Universe.Kai Wai Wong - 2024 - Open Journal of Philosophy 14 (2):481-487.
    Several important physical implications left out in The Five Dimension Space-Time Universe: A creation and grand unified field theory model. Book, are presented under rigorous mathematical theorems. It was found that Temperature, a classical variable, must be added as an imaginary component to time, under the Quantum uncertainty dt∙dE = h/2π, so that the Gell-Mann Quark model can be verified, with gauge invariance, to form hadrons at the Bethe Fusion Temperature. Accordingly from the corresponding uncertainty dp∙dr = h/2π. Pairs (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45. A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (1):51-89.
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  46.  49
    Paradoxes and Inconsistent Mathematics.Zach Weber - 2021 - New York, NY: Cambridge University Press.
    Logical paradoxes – like the Liar, Russell's, and the Sorites – are notorious. But in Paradoxes and Inconsistent Mathematics, it is argued that they are only the noisiest of many. Contradictions arise in the everyday, from the smallest points to the widest boundaries. In this book, Zach Weber uses “dialetheic paraconsistency” – a formal framework where some contradictions can be true without absurdity – as the basis for developing this idea rigorously, from mathematical foundations up. In doing so, Weber (...)
    Direct download  
     
    Export citation  
     
    Bookmark   12 citations  
  47.  91
    Introduction to mathematical thinking: the formation of concepts in modern mathematics.Friedrich Waismann - 1951 - Mineola, N.Y.: Dover Publications.
    "With exceptional clarity, but with no evasion of essential ideas, the author outlines the fundamental structure of mathematics."--Carl B. Boyer, Brooklyn College. This enlightening survey of mathematical concept formation holds a natural appeal to philosophically minded readers, and no formal training in mathematics is necessary to appreciate its clear exposition. Contents include examinations of arithmetic and geometry; the rigorous construction of the theory of integers; the rational numbers and their foundation in arithmetic; and the rigorous construction of elementary arithmetic. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  48.  63
    Mathematical Explanations: An Analysis Via Formal Proofs and Conceptual Complexity.Francesca Poggiolesi - 2024 - Philosophia Mathematica 32 (2):145-176.
    This paper studies internal (or intra-)mathematical explanations, namely those proofs of mathematical theorems that seem to explain the theorem they prove. The goal of the paper is a rigorous analysis of these explanations. This will be done in two steps. First, we will show how to move from informal proofs of mathematical theorems to a formal presentation that involves proof trees, together with a decomposition of their elements; secondly we will show that those mathematical proofs that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  49. Poincaré: Mathematics & logic & intuition.Colin Mclarty - 1997 - Philosophia Mathematica 5 (2):97-115.
    often insisted existence in mathematics means logical consistency, and formal logic is the sole guarantor of rigor. The paper joins this to his view of intuition and his own mathematics. It looks at predicativity and the infinite, Poincaré's early endorsement of the axiom of choice, and Cantor's set theory versus Zermelo's axioms. Poincaré discussed constructivism sympathetically only once, a few months before his death, and conspicuously avoided committing himself. We end with Poincaré on Couturat, Russell, and Hilbert.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  50. Open texture, rigor, and proof.Benjamin Zayton - 2022 - Synthese 200 (4):1-20.
    Open texture is a kind of semantic indeterminacy first systematically studied by Waismann. In this paper, extant definitions of open texture will be compared and contrasted, with a view towards the consequences of open-textured concepts in mathematics. It has been suggested that these would threaten the traditional virtues of proof, primarily the certainty bestowed by proof-possession, and this suggestion will be critically investigated using recent work on informal proof. It will be argued that informal proofs have virtues that mitigate the (...)
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
1 — 50 / 961