Order:
Disambiguations
Mohsen Khani [3]M. Khani [1]
  1.  25
    The additive structure of integers with the lower Wythoff sequence.Mohsen Khani & Afshin Zarei - 2023 - Archive for Mathematical Logic 62 (1):225-237.
    We have provided a model-theoretic proof for the decidability of the additive structure of integers together with the function f mapping x to $$\lfloor \varphi x\rfloor $$ where $$\varphi $$ is the golden ratio.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  7
    Bi-colored expansions of geometric theories.S. Jalili, M. Pourmahdian & M. Khani - 2025 - Annals of Pure and Applied Logic 176 (2):103525.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  11
    Model-completeness and decidability of the additive structure of integers expanded with a function for a Beatty sequence.Mohsen Khani, Ali N. Valizadeh & Afshin Zarei - 2024 - Annals of Pure and Applied Logic 175 (10):103493.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  23
    The field of reals with a predicate for the real algebraic numbers and a predicate for the integer powers of two.Mohsen Khani - 2015 - Archive for Mathematical Logic 54 (7):885-898.
    Given a theory T of a polynomially bounded o-minimal expansion R of $${\bar{\mathbb{R}} = \langle\mathbb{R}, +,., 0, 1, < \rangle}$$ with field of exponents $${\mathbb{Q}}$$, we introduce a theory $${\mathbb{T}}$$ whose models are expansions of dense pairs of models of T by a discrete multiplicative group. We prove that $${\mathbb{T}}$$ is complete and admits quantifier elimination when predicates are added for certain existential formulas. In particular, if T = RCF then $${\mathbb{T}}$$ axiomatises $${\langle\bar{\mathbb{R}}, \mathbb{R}_{alg}, 2^{\mathbb{Z}}\rangle}$$, where $${\mathbb{R}_{alg}}$$ denotes the real (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation