Order:
Disambiguations
Colin G. Bailey [4]Colin Bailey [1]Colin J. Bailey [1]
  1.  18
    Relativized projecta and [mathematical formula]-re sets.Colin G. Bailey - 1997 - Archive for Mathematical Logic 36 (4-5).
    Direct download  
     
    Export citation  
     
    Bookmark  
  2.  59
    Some jump-like operations in β-recursion theory.Colin G. Bailey - 2013 - Journal of Symbolic Logic 78 (1):57-71.
    In this paper we show that there are various pseudo-jump operators definable over inadmissible $J_{\beta}$ that relate to the failure of admissiblity and to non-regularity. We will use these ideas to construct some intermediate degrees.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  3.  59
    Some new natural α-RE-Degrees.Colin G. Bailey - 1987 - Journal of Symbolic Logic 52 (1):227-231.
    If α is a singular cardinal (either real or fake) in L, I exhibit many natural α-re subsets, defined uniformly from the ▵ 1 subsets of α. If α is a true cardinal this provides an uppersemilattice (usl) embedding from the lattice of ▵ 1 subsets of α into the usl of α-re-degrees. It will also be shown that this embedding cannot be extended to the Σ 1 subsets of α.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  4.  35
    Tabular degrees in \Ga-recursion theory.Colin Bailey & Rod Downey - 1992 - Annals of Pure and Applied Logic 55 (3):205-236.
    Bailey, C. and R. Downey, Tabular degrees in \Ga-recursion theory, Annals of Pure and Applied Logic 55 205–236. We introduce several generalizations of the truth-table and weak-truth-table reducibilities to \Ga-recursion theory. A number of examples are given of theorems that lift from \Gw-recursion theory, and of theorems that do not. In particular it is shown that the regular sets theorem fails and that not all natural generalizations of wtt are the same.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  5.  29
    Relativized projecta and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\beta$\end{document}-r.e. sets. [REVIEW]Colin G. Bailey - 1997 - Archive for Mathematical Logic 36 (4-5):289-296.
    I consider the projectum of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\beta$\end{document}-r.e. set. It is shown that there are tame r.e. sets with small projecta and that there are tame r.e. sets with large projecta.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark