Results for 'Classical and intuitionistic first order theories'

970 found
Order:
  1.  39
    A common axiom set for classical and intuitionistic plane geometry.Melinda Lombard & Richard Vesley - 1998 - Annals of Pure and Applied Logic 95 (1-3):229-255.
    We describe a first order axiom set which yields the classical first order Euclidean geometry of Tarski when used with classical logic, and yields an intuitionistic Euclidean geometry when used with intuitionistic logic. The first order language has a single six place atomic predicate and no function symbols. The intuitionistic system has a computational interpretation in recursive function theory, that is, a realizability interpretation analogous to those given by Kleene (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  2. Classical First-Order Logic.Stewart Shapiro & Teresa Kouri Kissel - 2022 - Cambridge University Press.
    One is often said to be reasoning well when they are reasoning logically. Many attempts to say what logical reasoning is have been proposed, but one commonly proposed system is first-order classical logic. This Element will examine the basics of first-order classical logic and discuss some surrounding philosophical issues. The first half of the Element develops a language for the system, as well as a proof theory and model theory. The authors provide theorems (...)
    No categories
     
    Export citation  
     
    Bookmark  
  3.  78
    Intuitionistic completeness for first order classical logic.Stefano Berardi - 1999 - Journal of Symbolic Logic 64 (1):304-312.
    In the past sixty years or so, a real forest of intuitionistic models for classical theories has grown. In this paper we will compare intuitionistic models of first order classical theories according to relevant issues, like completeness (w.r.t. first order classical provability), consistency, and relationship between a connective and its interpretation in a model. We briefly consider also intuitionistic models for classical ω-logic. All results included here, but (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  66
    Set theory: Constructive and intuitionistic ZF.Laura Crosilla - 2010 - Stanford Encyclopedia of Philosophy.
    Constructive and intuitionistic Zermelo-Fraenkel set theories are axiomatic theories of sets in the style of Zermelo-Fraenkel set theory (ZF) which are based on intuitionistic logic. They were introduced in the 1970's and they represent a formal context within which to codify mathematics based on intuitionistic logic. They are formulated on the basis of the standard first order language of Zermelo-Fraenkel set theory and make no direct use of inherently constructive ideas. In working in (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  5.  37
    Interpolation in Extensions of First-Order Logic.Guido Gherardi, Paolo Maffezioli & Eugenio Orlandelli - 2020 - Studia Logica 108 (3):619-648.
    We prove a generalization of Maehara’s lemma to show that the extensions of classical and intuitionistic first-order logic with a special type of geometric axioms, called singular geometric axioms, have Craig’s interpolation property. As a corollary, we obtain a direct proof of interpolation for (classical and intuitionistic) first-order logic with identity, as well as interpolation for several mathematical theories, including the theory of equivalence relations, (strict) partial and linear orders, and various (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  6.  55
    First-Order Logic in the Medvedev Lattice.Rutger Kuyper - 2015 - Studia Logica 103 (6):1185-1224.
    Kolmogorov introduced an informal calculus of problems in an attempt to provide a classical semantics for intuitionistic logic. This was later formalised by Medvedev and Muchnik as what has come to be called the Medvedev and Muchnik lattices. However, they only formalised this for propositional logic, while Kolmogorov also discussed the universal quantifier. We extend the work of Medvedev to first-order logic, using the notion of a first-order hyperdoctrine from categorical logic, to a structure (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  7.  35
    A Semantic Approach to Conservativity.Tomasz Połacik - 2016 - Studia Logica 104 (2):235-248.
    The aim of this paper is to describe from a semantic perspective the problem of conservativity of classical first-order theories over their intuitionistic counterparts. In particular, we describe a class of formulae for which such conservativity results can be proven in case of any intuitionistic theory T which is complete with respect to a class of T-normal Kripke models. We also prove conservativity results for intuitionistic theories which are closed under the Friedman (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8.  19
    Fibred algebraic semantics for a variety of non-classical first-order logics and topological logical translation.Yoshihiro Maruyama - 2021 - Journal of Symbolic Logic 86 (3):1189-1213.
    Lawvere hyperdoctrines give categorical algebraic semantics for intuitionistic predicate logic. Here we extend the hyperdoctrinal semantics to a broad variety of substructural predicate logics over the Typed Full Lambek Calculus, verifying their completeness with respect to the extended hyperdoctrinal semantics. This yields uniform hyperdoctrinal completeness results for numerous logics such as different types of relevant predicate logics and beyond, which are new results on their own; i.e., we give uniform categorical semantics for a broad variety of non-classical predicate (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  32
    First order theory for literal‐paraconsistent and literal‐paracomplete matrices.Renato A. Lewin & Irene F. Mikenberg - 2010 - Mathematical Logic Quarterly 56 (4):425-433.
    In this paper a first order theory for the logics defined through literal paraconsistent-paracomplete matrices is developed. These logics are intended to model situations in which the ground level information may be contradictory or incomplete, but it is treated within a classical framework. This means that literal formulas, i.e. atomic formulas and their iterated negations, may behave poorly specially regarding their negations, but more complex formulas, i.e. formulas that include a binary connective are well behaved. This situation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  39
    Games and Bisimulations for Intuitionistic First-Order Kripke Models.Małgorzata Kruszelnicka - 2021 - Studia Logica 109 (5):903-916.
    The aim of this paper is to introduce the notion of a game for intuitionistic first-order Kripke models. We also establish links between notions presented here and the notions of logical equivalence and bounded bisimulation for intuitionistic first-order Kripke models, and the Ehrenfeucht–Fraïssé game for classical first-order structures.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  48
    Proof theory of classical and intuitionistic logic.Jan von Plato - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    This chapter focuses on the development of Gerhard Gentzen's structural proof theory and its connections with intuitionism. The latter is important in proof theory for several reasons. First, the methods of Hilbert's old proof theory were limited to the “finitistic” ones. These methods proved to be insufficient, and they were extended by infinitistic principles that were still intuitionistically meaningful. It is a general tendency in proof theory to try to use weak principles. A second reason for the importance of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  12. Higher-Order Logic and Type Theory.John L. Bell - 2022 - Cambridge University Press.
    This Element is an exposition of second- and higher-order logic and type theory. It begins with a presentation of the syntax and semantics of classical second-order logic, pointing up the contrasts with first-order logic. This leads to a discussion of higher-order logic based on the concept of a type. The second Section contains an account of the origins and nature of type theory, and its relationship to set theory. Section 3 introduces Local Set Theory, (...)
     
    Export citation  
     
    Bookmark   1 citation  
  13.  78
    Classical and Intuitionistic Models of Arithmetic.Kai F. Wehmeier - 1996 - Notre Dame Journal of Formal Logic 37 (3):452-461.
    Given a classical theory T, a Kripke model K for the language L of T is called T-normal or locally PA just in case the classical L-structure attached to each node of K is a classical model of T. Van Dalen, Mulder, Krabbe, and Visser showed that Kripke models of Heyting Arithmetic (HA) over finite frames are locally PA, and that Kripke models of HA over frames ordered like the natural numbers contain infinitely many PA-nodes. We show (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  14.  43
    The first-order logic of CZF is intuitionistic first-order logic.Robert Passmann - 2024 - Journal of Symbolic Logic 89 (1):308-330.
    We prove that the first-order logic of CZF is intuitionistic first-order logic. To do so, we introduce a new model of transfinite computation (Set Register Machines) and combine the resulting notion of realisability with Beth semantics. On the way, we also show that the propositional admissible rules of CZF are exactly those of intuitionistic propositional logic.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  26
    Semantic Completeness of First-Order Theories in Constructive Reverse Mathematics.Christian Espíndola - 2016 - Notre Dame Journal of Formal Logic 57 (2):281-286.
    We introduce a general notion of semantic structure for first-order theories, covering a variety of constructions such as Tarski and Kripke semantics, and prove that, over Zermelo–Fraenkel set theory, the completeness of such semantics is equivalent to the Boolean prime ideal theorem. Using a result of McCarty, we conclude that the completeness of Kripke semantics is equivalent, over intuitionistic Zermelo–Fraenkel set theory, to the Law of Excluded Middle plus BPI. Along the way, we also prove the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16.  43
    Intuitionistic validity in T-normal Kripke structures.Samuel R. Buss - 1993 - Annals of Pure and Applied Logic 59 (3):159-173.
    Let T be a first-order theory. A T-normal Kripke structure is one in which every world is a classical model of T. This paper gives a characterization of the intuitionistic theory T of sentences intuitionistically valid in all T-normal Kripke structures and proves the corresponding soundness and completeness theorems. For Peano arithmetic , the theory PA is a proper subtheory of Heyting arithmetic , so HA is complete but not sound for PA-normal Kripke structures.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  17.  32
    Comparing classical and relativistic kinematics in first-order logic.Koen Lefever & Gergely Székely - unknown
    The aim of this paper is to present a new logic-based understanding of the connection between classical kinematics and relativistic kinematics. We show that the axioms of special relativity can be interpreted in the language of classical kinematics. This means that there is a logical translation function from the language of special relativity to the language of classical kinematics which translates the axioms of special relativity into consequences of classical kinematics. We will also show that if (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  18. An Introduction to Proof Theory: Normalization, Cut-Elimination, and Consistency Proofs.Paolo Mancosu, Sergio Galvan & Richard Zach - 2021 - Oxford: Oxford University Press. Edited by Sergio Galvan & Richard Zach.
    An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic, natural deduction and the normalization theorems, the sequent calculus, including cut-elimination and mid-sequent theorems, and various (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  19.  37
    A first-order equation for spin in a manifestly relativistically covariant quantum theory.A. Arensburg & L. P. Horwitz - 1992 - Foundations of Physics 22 (8):1025-1039.
    Relativistic quantum mechanics has been formulated as a theory of the evolution ofevents in spacetime; the wave functions are square-integrable functions on the four-dimensional spacetime, parametrized by a universal invariant world time τ. The representation of states with spin is induced with a little group that is the subgroup of O(3, 1) leaving invariant a timelike vector nμ; a positive definite invariant scalar product, for which matrix elements of tensor operators are covariant, emerges from this construction. In a previous study (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  20. Typed lambda-calculus in classical Zermelo-Frænkel set theory.Jean-Louis Krivine - 2001 - Archive for Mathematical Logic 40 (3):189-205.
    , which uses the intuitionistic propositional calculus, with the only connective →. It is very important, because the well known Curry-Howard correspondence between proofs and programs was originally discovered with it, and because it enjoys the normalization property: every typed term is strongly normalizable. It was extended to second order intuitionistic logic, in 1970, by J.-Y. Girard [4], under the name of system F, still with the normalization property.More recently, in 1990, the Curry-Howard correspondence was extended to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  21.  32
    Relating First-Order Set Theories and Elementary Toposes.Steve Awodey & Thomas Streicher - 2007 - Bulletin of Symbolic Logic 13 (3):340-358.
    We show how to interpret the language of first-order set theory in an elementary topos endowed with, as extra structure, a directed structural system of inclusions . As our main result, we obtain a complete axiomatization of the intuitionistic set theory validated by all such interpretations. Since every elementary topos is equivalent to one carrying a dssi, we thus obtain a first-order set theory whose associated categories of sets are exactly the elementary toposes. In addition, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  22.  86
    Negation And Contradiction.Richard Routley Val Routley, Richard Sylvan & Richard Routley - 1985 - Revista Columbiana de Mathematicas 19:201 - 231.
    The problems of the meaning and function of negation are disentangled from ontological issues with which they have been long entangled. The question of the function of negation is the crucial issue separating relevant and paraconsistent logics from classical theories. The function is illuminated by considering the inferential role of contradictions, contradiction being parasitic on negation. Three basic modelings emerge: a cancellation model, which leads towards connexivism, an explosion model, appropriate to classical and intuitionistic theories, (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  23.  96
    Relating first-order set theories and elementary toposes.Steve Awodey, Carsten Butz & Alex Simpson - 2007 - Bulletin of Symbolic Logic 13 (3):340-358.
    We show how to interpret the language of first-order set theory in an elementary topos endowed with, as extra structure, a directed structural system of inclusions (dssi). As our main result, we obtain a complete axiomatization of the intuitionistic set theory validated by all such interpretations. Since every elementary topos is equivalent to one carrying a dssi, we thus obtain a first-order set theory whose associated categories of sets are exactly the elementary toposes. In addition, (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  24.  41
    Intuitionistic fixed point logic.Ulrich Berger & Hideki Tsuiki - 2021 - Annals of Pure and Applied Logic 172 (3):102903.
    We study the system IFP of intuitionistic fixed point logic, an extension of intuitionistic first-order logic by strictly positive inductive and coinductive definitions. We define a realizability interpretation of IFP and use it to extract computational content from proofs about abstract structures specified by arbitrary classically true disjunction free formulas. The interpretation is shown to be sound with respect to a domain-theoretic denotational semantics and a corresponding lazy operational semantics of a functional language for extracted programs. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  77
    Intuitionistic completeness of first-order logic.Robert Constable & Mark Bickford - 2014 - Annals of Pure and Applied Logic 165 (1):164-198.
    We constructively prove completeness for intuitionistic first-order logic, iFOL, showing that a formula is provable in iFOL if and only if it is uniformly valid in intuitionistic evidence semantics as defined in intuitionistic type theory extended with an intersection operator.Our completeness proof provides an effective procedure that converts any uniform evidence into a formal iFOL proof. Uniform evidence can involve arbitrary concepts from type theory such as ordinals, topological structures, algebras and so forth. We have (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  26.  42
    Extending the first-order theory of combinators with self-referential truth.Andrea Cantini - 1993 - Journal of Symbolic Logic 58 (2):477-513.
    The aim of this paper is to introduce a formal system STW of self-referential truth, which extends the classical first-order theory of pure combinators with a truth predicate and certain approximation axioms. STW naturally embodies the mechanisms of general predicate application/abstraction on a par with function application/abstraction; in addition, it allows non-trivial constructions, inspired by generalized recursion theory. As a consequence, STW provides a smooth inner model for Myhill's systems with levels of implication.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  27.  50
    Tarski's theory of definability: common themes in descriptive set theory, recursive function theory, classical pure logic, and finite-universe logic.J. W. Addison - 2004 - Annals of Pure and Applied Logic 126 (1-3):77-92.
    Although the theory of definability had many important antecedents—such as the descriptive set theory initiated by the French semi-intuitionists in the early 1900s—the main ideas were first laid out in precise mathematical terms by Alfred Tarski beginning in 1929. We review here the basic notions of languages, explicit definability, and grammatical complexity, and emphasize common themes in the theories of definability for four important languages underlying, respectively, descriptive set theory, recursive function theory, classical pure logic, and finite-universe (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  28.  45
    First-Order Logic and First-Order Functions.Rodrigo A. Freire - 2015 - Logica Universalis 9 (3):281-329.
    This paper begins the study of first-order functions, which are a generalization of truth-functions. The concepts of truth-table and systems of truth-functions, both introduced in propositional logic by Post, are also generalized and studied in the quantificational setting. The general facts about these concepts are given in the first five sections, and constitute a “general theory” of first-order functions. The central theme of this paper is the relation of definition among notions expressed by formulas of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  29.  23
    Semantical Completeness of First-Order Predicate Logic and the Weak Fan Theorem.Victor N. Krivtsov - 2015 - Studia Logica 103 (3):623-638.
    Within a weak system \ of intuitionistic analysis one may prove, using the Weak Fan Theorem as an additional axiom, a completeness theorem for intuitionistic first-order predicate logic relative to validity in generalized Beth models as well as a completeness theorem for classical first-order predicate logic relative to validity in intuitionistic structures. Conversely, each of these theorems implies over \ the Weak Fan Theorem.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  30.  33
    Forcing and satisfaction in Kripke models of intuitionistic arithmetic.Maryam Abiri, Morteza Moniri & Mostafa Zaare - 2019 - Logic Journal of the IGPL 27 (5):659-670.
    We define a class of first-order formulas $\mathsf{P}^{\ast }$ which exactly contains formulas $\varphi$ such that satisfaction of $\varphi$ in any classical structure attached to a node of a Kripke model of intuitionistic predicate logic deciding atomic formulas implies its forcing in that node. We also define a class of $\mathsf{E}$-formulas with the property that their forcing coincides with their classical satisfiability in Kripke models which decide atomic formulas. We also prove that any formula with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31. Proof Theory of Finite-valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  32.  26
    Krivine's intuitionistic proof of classical completeness.Stefano Berardi & Silvio Valentini - 2004 - Annals of Pure and Applied Logic 129 (1-3):93-106.
    In 1996, Krivine applied Friedman's A-translation in order to get an intuitionistic version of Gödel completeness result for first-order classical logic and countable languages and models. Such a result is known to be intuitionistically underivable 559), but Krivine was able to derive intuitionistically a weak form of it, namely, he proved that every consistent classical theory has a model. In this paper, we want to analyze the ideas Krivine's remarkable result relies on, ideas which (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  33.  36
    Tableau systems for first order number theory and certain higher order theories.Sue Ann Toledo - 1975 - New York: Springer Verlag.
    Most of this work is devoted to presenting aspects of proof theory that have developed out of Gentzen's work. Thus the them is "cut elimination" and transfinite induction over constructive ordinals. Smullyan's tableau systems will be used for the formalisms and some of the basic logical results as presented in Smullyan [1] will be assumed to be known (essentially only the classical completeness and consistency proofs for propositional and first order logic).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  34.  22
    Embedding Friendly First-Order Paradefinite and Connexive Logics.Norihiro Kamide - 2022 - Journal of Philosophical Logic 51 (5):1055-1102.
    First-order intuitionistic and classical Nelson–Wansing and Arieli–Avron–Zamansky logics, which are regarded as paradefinite and connexive logics, are investigated based on Gentzen-style sequent calculi. The cut-elimination and completeness theorems for these logics are proved uniformly via theorems for embedding these logics into first-order intuitionistic and classical logics. The modified Craig interpolation theorems for these logics are also proved via the same embedding theorems. Furthermore, a theorem for embedding first-order classical Arieli–Avron–Zamansky (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  35. Classical logic without bivalence.Tor Sandqvist - 2009 - Analysis 69 (2):211-218.
    Semantic justifications of the classical rules of logical inference typically make use of a notion of bivalent truth, understood as a property guaranteed to attach to a sentence or its negation regardless of the prospects for speakers to determine it as so doing. For want of a convincing alternative account of classical logic, some philosophers suspicious of such recognition-transcending bivalence have seen no choice but to declare classical deduction unwarranted and settle for a weaker system; intuitionistic (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  36.  33
    Structured sequent calculi for combining intuitionistic and classical first-order logic.Paqui Lucio - 2000 - In Dov M. Gabbay & Maarten de Rijke (eds.), Frontiers of combining systems 2. Philadelphia, PA: Research Studies Press. pp. 88--104.
  37.  2
    Classical theory of first order logic.A. Pampapathy Rao - 1970 - Simla,: Indian Institute of Advanced Study.
    Direct download  
     
    Export citation  
     
    Bookmark  
  38.  52
    Multimodal and intuitionistic logics in simple type theory.Christoph Benzmueller & Lawrence Paulson - 2010 - Logic Journal of the IGPL 18 (6):881-892.
    We study straightforward embeddings of propositional normal multimodal logic and propositional intuitionistic logic in simple type theory. The correctness of these embeddings is easily shown. We give examples to demonstrate that these embeddings provide an effective framework for computational investigations of various non-classical logics. We report some experiments using the higher-order automated theorem prover LEO-II.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  39.  51
    Linguistic applications of first order intuitionistic linear logic.Richard Moot & Mario Piazza - 2001 - Journal of Logic, Language and Information 10 (2):211-232.
    In this paper we will discuss the first order multiplicative intuitionistic fragment of linear logic, MILL1, and its applications to linguistics. We give an embedding translation from formulas in the Lambek Calculus to formulas in MILL1 and show this translation is sound and complete. We then exploit the extra power of the first order fragment to give an account of a number of linguistic phenomena which have no satisfactory treatment in the Lambek Calculus.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  40.  43
    Preservation theorems for Kripke models.Morteza Moniri & Mostafa Zaare - 2009 - Mathematical Logic Quarterly 55 (2):177-184.
    There are several ways for defining the notion submodel for Kripke models of intuitionistic firstorder logic. In our approach a Kripke model A is a submodel of a Kripke model B if they have the same frame and for each two corresponding worlds Aα and Bα of them, Aα is a subset of Bα and forcing of atomic formulas with parameters in the smaller one, in A and B, are the same. In this case, B is called (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  41.  36
    Categories with families and first-order logic with dependent sorts.Erik Palmgren - 2019 - Annals of Pure and Applied Logic 170 (12):102715.
    First-order logic with dependent sorts, such as Makkai's first-order logic with dependent sorts (FOLDS), or Aczel's and Belo's dependently typed (intuitionistic) first-order logic (DFOL), may be regarded as logic enriched dependent type theories. Categories with families (cwfs) is an established semantical structure for dependent type theories, such as Martin-Löf type theory. We introduce in this article a notion of hyperdoctrine over a cwf, and show how FOLDS and DFOL fit in this (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  40
    Provably recursive functions of constructive and relatively constructive theories.Morteza Moniri - 2010 - Archive for Mathematical Logic 49 (3):291-300.
    In this paper we prove conservation theorems for theories of classical first-order arithmetic over their intuitionistic version. We also prove generalized conservation results for intuitionistic theories when certain weak forms of the principle of excluded middle are added to them. Members of two families of subsystems of Heyting arithmetic and Buss-Harnik’s theories of intuitionistic bounded arithmetic are the intuitionistic theories we consider. For the first group, we use a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  43. The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  44.  63
    The logic of first order intuitionistic type theory with weak sigma- elimination.M. D. G. Swaen - 1991 - Journal of Symbolic Logic 56 (2):467-483.
    Via the formulas-as-types embedding certain extensions of Heyting Arithmetic can be represented in intuitionistic type theories. In this paper we discuss the embedding of ω-sorted Heyting Arithmetic HA ω into a type theory WL, that can be described as Troelstra's system ML 1 0 with so-called weak Σ-elimination rules. By syntactical means it is proved that a formula is derivable in HA ω if and only if its corresponding type in WL is inhabited. Analogous results are proved for (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  20
    Ethical Intuitionism and the Problem of Dogmatism.Thomas Meyer & Tim Rojek - 2018 - In Johannes Müller-Salo (ed.), Robert Audi: Critical Engagements. Cham: Springer Verlag. pp. 141-152.
    In this paper, we try to confront Robert Audis moral epistemology, namely his intuitionism, based on the concept of a self-evident moral proposition, with two main problems: disagreement and dogmatism within moral discourse. Although Audi can meet those classical objections in his theory, we think that some problems remain. We proceed – after an introduction – in five sections in order to pursue this end. After a short introductory section, we first reconstruct the classical intuitionist moral (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  46. First-Order Logic Formalisation of Impossibility Theorems in Preference Aggregation.Umberto Grandi & Ulle Endriss - 2013 - Journal of Philosophical Logic 42 (4):595-618.
    In preference aggregation a set of individuals express preferences over a set of alternatives, and these preferences have to be aggregated into a collective preference. When preferences are represented as orders, aggregation procedures are called social welfare functions. Classical results in social choice theory state that it is impossible to aggregate the preferences of a set of individuals under different natural sets of axiomatic conditions. We define a first-order language for social welfare functions and we give a (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  47. Realizability models for constructive set theories with restricted induction principles.Laura Crosilla - unknown
    This thesis presents a proof theoretical investigation of some constructive set theories with restricted set induction. The set theories considered are various systems of Constructive Zermelo Fraenkel set theory, CZF ([1]), in which the schema of $\in$ - Induction is either removed or weakened. We shall examine the theories $CZF^\Sigma_\omega$ and $CZF_\omega$, in which the $\in$ - Induction scheme is replaced by a scheme of induction on the natural numbers (only for  formulas in the case of (...)
     
    Export citation  
     
    Bookmark  
  48.  28
    A short introduction to intuitionistic logic.Grigori Mints - 2000 - New York: Kluwer Academic / Plenum Publishers.
    Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs. to make the material more accessible, basic techniques are presented first for propositional logic; Part II contains extensions to predicate logic. This material provides an introduction and a safe background for reading research literature in logic and computer science as well as advanced monographs. Readers are assumed to be familiar with basic notions of first order logic. (...)
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  49.  98
    Andrew M. Pitts. Interpolation and conceptual completeness for pretoposes via category theory. Mathematical logic and theoretical computer science, edited by Kueker David W., Lopez-Escobar Edgar G. K. and Smith Carl H., Lecture notes in pure and applied mathematics, vol. 106, Marcel Dekker, New York and Basel1987, pp. 301–327. - Andrew M. Pitts. Conceptual completeness for first-order intuitionistic logic: an application of categorical logic. Annals of pure and applied logic, vol. 41 , pp. 33–81. [REVIEW]Marek Zawadowski - 1995 - Journal of Symbolic Logic 60 (2):692-694.
  50.  20
    One-Variable Fragments of First-Order Logics.Petr Cintula, George Metcalfe & Naomi Tokuda - 2024 - Bulletin of Symbolic Logic 30 (2):253-278.
    The one-variable fragment of a first-order logic may be viewed as an “S5-like” modal logic, where the universal and existential quantifiers are replaced by box and diamond modalities, respectively. Axiomatizations of these modal logics have been obtained for special cases—notably, the modal counterparts $\mathrm {S5}$ and $\mathrm {MIPC}$ of the one-variable fragments of first-order classical logic and first-order intuitionistic logic, respectively—but a general approach, extending beyond first-order intermediate logics, has been (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 970