Results for '18C35'

4 found
Order:
  1.  20
    Nsop $_1$ -Like Independence in Aecats.Mark Kamsma - 2024 - Journal of Symbolic Logic 89 (2):724-757.
    The classes stable, simple, and NSOP $_1$ in the stability hierarchy for first-order theories can be characterised by the existence of a certain independence relation. For each of them there is a canonicity theorem: there can be at most one nice independence relation. Independence in stable and simple first-order theories must come from forking and dividing (which then coincide), and for NSOP $_1$ theories it must come from Kim-dividing. We generalise this work to the framework of Abstract Elementary Categories (AECats) (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  9
    Independence Relations in Abstract Elementary Categories.Mark Kamsma - 2022 - Bulletin of Symbolic Logic 28 (4):531-531.
    In model theory, a branch of mathematical logic, we can classify mathematical structures based on their logical complexity. This yields the so-called stability hierarchy. Independence relations play an important role in this stability hierarchy. An independence relation tells us which subsets of a structure contain information about each other, for example, linear independence in vector spaces yields such a relation.Some important classes in the stability hierarchy are stable, simple, and NSOP $_1$, each being contained in the next. For each of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  25
    Cellular Categories and Stable Independence.Michael Lieberman, Jiří Rosický & Sebastien Vasey - forthcoming - Journal of Symbolic Logic:1-24.
    We exhibit a bridge between the theory of cellular categories, used in algebraic topology and homological algebra, and the model-theoretic notion of stable independence. Roughly speaking, we show that the combinatorial cellular categories (those where, in a precise sense, the cellular morphisms are generated by a set) are exactly those that give rise to stable independence notions. We give two applications: on the one hand, we show that the abstract elementary classes of roots of Ext studied by Baldwin–Eklof–Trlifaj are stable (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4. Enriched Concepts of Regular Logic.Jiří Rosický & Giacomo Tendas - forthcoming - Journal of Symbolic Logic:1-38.
    Building on our previous work on enriched universal algebra, we define a notion of enriched language consisting of function and relation symbols whose arities are objects of the base of enrichment $\mathcal {V}$. In this context, we construct atomic formulas and define the regular fragment of our enriched logic by taking conjunctions and existential quantification of those. We then characterize $\mathcal {V}$ -categories of models of regular theories as enriched injectivity classes in the $\mathcal {V}$ -category of structures. These notions (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark