Cellular Categories and Stable Independence

Journal of Symbolic Logic:1-24 (forthcoming)
  Copy   BIBTEX

Abstract

We exhibit a bridge between the theory of cellular categories, used in algebraic topology and homological algebra, and the model-theoretic notion of stable independence. Roughly speaking, we show that the combinatorial cellular categories (those where, in a precise sense, the cellular morphisms are generated by a set) are exactly those that give rise to stable independence notions. We give two applications: on the one hand, we show that the abstract elementary classes of roots of Ext studied by Baldwin–Eklof–Trlifaj are stable and tame. On the other hand, we give a simpler proof (in a special case) that combinatorial categories are closed under 2-limits, a theorem of Makkai and Rosický.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,448

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2022-05-20

Downloads
24 (#897,904)

6 months
8 (#551,658)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations

References found in this work

Canonical forking in AECs.Will Boney, Rami Grossberg, Alexei Kolesnikov & Sebastien Vasey - 2016 - Annals of Pure and Applied Logic 167 (7):590-613.
Abstract elementary classes and accessible categories.Tibor Beke & Jirí Rosický - 2012 - Annals of Pure and Applied Logic 163 (12):2008-2017.
As an abstract elementary class.John T. Baldwin, Paul C. Eklof & Jan Trlifaj - 2007 - Annals of Pure and Applied Logic 149 (1-3):25-39.
Accessible categories, saturation and categoricity.Jiri Rosicky - 1997 - Journal of Symbolic Logic 62 (3):891-901.

Add more references