Results for '03C98'

10 found
Order:
  1.  14
    Counting Siblings in Universal Theories.Samuel Braunfeld & Michael C. Laskowski - 2022 - Journal of Symbolic Logic 87 (3):1130-1155.
    We show that if a countable structure M in a finite relational language is not cellular, then there is an age-preserving $N \supseteq M$ such that $2^{\aleph _0}$ many structures are bi-embeddable with N. The proof proceeds by a case division based on mutual algebraicity.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  29
    More on Galois Cohomology, Definability, and Differential Algebraic Groups.Omar León Sánchez, David Meretzky & Anand Pillay - 2024 - Journal of Symbolic Logic 89 (2):496-515.
    As a continuation of the work of the third author in [5], we make further observations on the features of Galois cohomology in the general model theoretic context. We make explicit the connection between forms of definable groups and first cohomology sets with coefficients in a suitable automorphism group. We then use a method of twisting cohomology (inspired by Serre’s algebraic twisting) to describe arbitrary fibres in cohomology sequences—yielding a useful “finiteness” result on cohomology sets.Applied to the special case of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  14
    On Model-Theoretic Connected Groups.Jakub Gismatullin - 2024 - Journal of Symbolic Logic 89 (1):50-79.
    We introduce and study the model-theoretic notions of absolute connectedness and type-absolute connectedness for groups. We prove that groups of rational points of split semisimple linear groups (that is, Chevalley groups) over arbitrary infinite fields are absolutely connected and characterize connected Lie groups which are type-absolutely connected. We prove that the class of type-absolutely connected group is exactly the class of discretely topologized groups with the trivial Bohr compactification, that is, the class of minimally almost periodic groups.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  24
    A nullstellensatz and a positivstellensatz for ordered differential fields.Quentin Brouette - 2013 - Mathematical Logic Quarterly 59 (3):247-254.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  20
    Definable Functions and Stratifications in Power-Bounded T -Convex Fields.Erick García Ramírez - 2020 - Notre Dame Journal of Formal Logic 61 (3):441-465.
    We study properties of definable sets and functions in power-bounded T -convex fields, proving that the latter have the multidimensional Jacobian property and that the theory of T -convex fields is b -minimal with centers. Through these results and work of I. Halupczok we ensure that a certain kind of geometrical stratifications exist for definable objects in said fields. We then discuss a number of applications of those stratifications, including applications to Archimedean o-minimal geometry.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  6.  4
    Extensions and Limits of the Specker–Blatter Theorem.Eldar Fischer & Johann A. Makowsky - 2024 - Journal of Symbolic Logic 89 (3):1284-1312.
    The original Specker–Blatter theorem (1983) was formulated for classes of structures $\mathcal {C}$ of one or several binary relations definable in Monadic Second Order Logic MSOL. It states that the number of such structures on the set $[n]$ is modularly C-finite (MC-finite). In previous work we extended this to structures definable in CMSOL, MSOL extended with modular counting quantifiers. The first author also showed that the Specker–Blatter theorem does not hold for one quaternary relation (2003).If the vocabulary allows a constant (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7. Bohr Compactifications of Groups and Rings.Jakub Gismatullin, Grzegorz Jagiella & Krzysztof Krupiński - 2023 - Journal of Symbolic Logic 88 (3):1103-1137.
    We introduce and study model-theoretic connected components of rings as an analogue of model-theoretic connected components of definable groups. We develop their basic theory and use them to describe both the definable and classical Bohr compactifications of rings. We then use model-theoretic connected components to explicitly calculate Bohr compactifications of some classical matrix groups, such as the discrete Heisenberg group ${\mathrm {UT}}_3({\mathbb {Z}})$, the continuous Heisenberg group ${\mathrm {UT}}_3({\mathbb {R}})$, and, more generally, groups of upper unitriangular and invertible upper triangular (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  8.  15
    A New Perspective on Semi-Retractions and the Ramsey Property.Dana Bartošová & Lynn Scow - 2024 - Journal of Symbolic Logic 89 (3):945-979.
    We investigate the notion of a semi-retraction between two first-order structures (in typically different signatures) that was introduced by the second author as a link between the Ramsey property and generalized indiscernible sequences. We look at semi-retractions through a new lens establishing transfers of the Ramsey property and finite Ramsey degrees under quite general conditions that are optimal as demonstrated by counterexamples. Finally, we compare semi-retractions to the category theoretic notion of a pre-adjunction.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  21
    Model-Theoretic Properties of Dynamics on the Cantor Set.Christopher J. Eagle & Alan Getz - 2022 - Notre Dame Journal of Formal Logic 63 (3):357-371.
    We examine topological dynamical systems on the Cantor set from the point of view of the continuous model theory of commutative C*-algebras. After some general remarks, we focus our attention on the generic homeomorphism of the Cantor set, as constructed by Akin, Glasner, and Weiss. We show that this homeomorphism is the prime model of its theory. We also show that the notion of “generic” used by Akin, Glasner, and Weiss is distinct from the notion of “generic” encountered in Fraïssé (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  4
    On Ultraproducts, the Spectral Theorem and Rigged Hilbert Spaces.Åsa Hirvonen & Tapani Hyttinen - 2024 - Journal of Symbolic Logic 89 (4):1397-1429.
    We start by showing how to approximate unitary and bounded self-adjoint operators by operators in finite dimensional spaces. Using ultraproducts we give a precise meaning for the approximation. In this process we see how the spectral measure is obtained as an ultralimit of counting measures that arise naturally from the finite dimensional approximations. Then we see how generalized distributions can be interpreted in the ultraproduct. Finally we study how one can calculate kernels of operators K by calculating them in the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark