Results for ' axiom A forcing'

965 found
Order:
  1.  44
    The Bounded Axiom A Forcing Axiom.Thilo Weinert - 2010 - Mathematical Logic Quarterly 56 (6):659-665.
    We introduce the Bounded Axiom A Forcing Axiom . It turns out that it is equiconsistent with the existence of a regular ∑2-correct cardinal and hence also equiconsistent with BPFA. Furthermore we show that, if consistent, it does not imply the Bounded Proper Forcing Axiom.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  24
    A forcing axiom for a non-special Aronszajn tree.John Krueger - 2020 - Annals of Pure and Applied Logic 171 (8):102820.
    Suppose that T^∗ is an ω_1-Aronszajn tree with no stationary antichain. We introduce a forcing axiom PFA(T^∗) for proper forcings which preserve these properties of T^∗. We prove that PFA(T^∗) implies many of the strong consequences of PFA, such as the failure of very weak club guessing, that all of the cardinal characteristics of the continuum are greater than ω_1, and the P-ideal dichotomy. On the other hand, PFA(T^∗) implies some of the consequences of diamond principles, such as (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  46
    Woodin's axiom , bounded forcing axioms, and precipitous ideals on ω 1.Benjamin Claverie & Ralf Schindler - 2012 - Journal of Symbolic Logic 77 (2):475-498.
    If the Bounded Proper Forcing Axiom BPFA holds, then Mouse Reflection holds at N₂ with respect to all mouse operators up to the level of Woodin cardinals in the next ZFC-model. This yields that if Woodin's ℙ max axiom (*) holds, then BPFA implies that V is closed under the "Woodin-in-the-next-ZFC-model" operator. We also discuss stronger Mouse Reflection principles which we show to follow from strengthenings of BPFA, and we discuss the theory BPFA plus "NS ω1 is (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  4.  40
    The proper forcing axiom, Prikry forcing, and the singular cardinals hypothesis.Justin Tatch Moore - 2006 - Annals of Pure and Applied Logic 140 (1):128-132.
    The purpose of this paper is to present some results which suggest that the Singular Cardinals Hypothesis follows from the Proper Forcing Axiom. What will be proved is that a form of simultaneous reflection follows from the Set Mapping Reflection Principle, a consequence of PFA. While the results fall short of showing that MRP implies SCH, it will be shown that MRP implies that if SCH fails first at κ then every stationary subset of reflects. It will also (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  5.  40
    Resurrection axioms and uplifting cardinals.Joel David Hamkins & Thomas A. Johnstone - 2014 - Archive for Mathematical Logic 53 (3-4):463-485.
    We introduce the resurrection axioms, a new class of forcing axioms, and the uplifting cardinals, a new large cardinal notion, and prove that various instances of the resurrection axioms are equiconsistent over ZFC with the existence of an uplifting cardinal.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  6.  15
    Specializing Aronszajn Trees with Strong Axiom A and Halving.Heike Mildenberger & Saharon Shelah - 2019 - Notre Dame Journal of Formal Logic 60 (4):587-616.
    We construct creature forcings with strong Axiom A that specialize a given Aronszajn tree. We work with tree creature forcing. The creatures that live on the Aronszajn tree are normed and have the halving property. We show that our models fulfill ℵ1=d
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  28
    Forcing Indestructibility of Set-Theoretic Axioms.Bernhard König - 2007 - Journal of Symbolic Logic 72 (1):349 - 360.
    Various theorems for the preservation of set-theoretic axioms under forcing are proved, regarding both forcing axioms and axioms true in the Lévy collapse. These show in particular that certain applications of forcing axioms require to add generic countable sequences high up in the set-theoretic hierarchy even before collapsing everything down to ‮א‬₁. Later we give applications, among them the consistency of MM with ‮א‬ω not being Jónsson which answers a question raised in the set theory meeting at (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  8.  25
    Forcing axioms and coronas of C∗-algebras.Paul McKenney & Alessandro Vignati - 2021 - Journal of Mathematical Logic 21 (2):2150006.
    We prove rigidity results for large classes of corona algebras, assuming the Proper Forcing Axiom. In particular, we prove that a conjecture of Coskey and Farah holds for all separable [Formula: see text]-algebras with the metric approximation property and an increasing approximate identity of projections.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  15
    Forcing axioms for λ‐complete μ+$\mu ^+$‐c.c.Saharon Shelah - 2022 - Mathematical Logic Quarterly 68 (1):6-26.
    We consider forcing axioms for suitable families of μ‐complete ‐c.c. forcing notions. We show that some form of the condition “ have a in ” is necessary. We also show some versions are really stronger than others.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  44
    Bounded forcing axioms as principles of generic absoluteness.Joan Bagaria - 2000 - Archive for Mathematical Logic 39 (6):393-401.
    We show that Bounded Forcing Axioms (for instance, Martin's Axiom, the Bounded Proper Forcing Axiom, or the Bounded Martin's Maximum) are equivalent to principles of generic absoluteness, that is, they assert that if a $\Sigma_1$ sentence of the language of set theory with parameters of small transitive size is forceable, then it is true. We also show that Bounded Forcing Axioms imply a strong form of generic absoluteness for projective sentences, namely, if a $\Sigma^1_3$ sentence (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   36 citations  
  11.  55
    A maximal bounded forcing axiom.David Asperó - 2002 - Journal of Symbolic Logic 67 (1):130-142.
    After presenting a general setting in which to look at forcing axioms, we give a hierarchy of generalized bounded forcing axioms that correspond level by level, in consistency strength, with the members of a natural hierarchy of large cardinals below a Mahlo. We give a general construction of models of generalized bounded forcing axioms. Then we consider the bounded forcing axiom for a class of partially ordered sets Γ 1 such that, letting Γ 0 be (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Semiproper forcing axiom implies Martin maximum but not PFA+.Saharon Shelah - 1987 - Journal of Symbolic Logic 52 (2):360-367.
    We prove that MM (Martin maximum) is equivalent (in ZFC) to the older axiom SPFA (semiproper forcing axiom). We also prove that SPFA does not imply SPFA + or even PFA + (using the consistency of a large cardinal).
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  13.  18
    Forcing Axioms and the Definability of the Nonstationary Ideal on the First Uncountable.Stefan Hoffelner, Paul Larson, Ralf Schindler & W. U. Liuzhen - 2024 - Journal of Symbolic Logic 89 (4):1641-1658.
    We show that under $\mathsf {BMM}$ and “there exists a Woodin cardinal, $"$ the nonstationary ideal on $\omega _1$ cannot be defined by a $\Pi _1$ formula with parameter $A \subset \omega _1$. We show that the same conclusion holds under the assumption of Woodin’s $(\ast )$ -axiom. We further show that there are universes where $\mathsf {BPFA}$ holds and $\text {NS}_{\omega _1}$ is $\Pi _1(\{\omega _1\})$ -definable. Lastly we show that if the canonical inner model with one Woodin (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  40
    Hierarchies of Forcing Axioms II.Itay Neeman - 2008 - Journal of Symbolic Logic 73 (2):522 - 542.
    A $\Sigma _{1}^{2}$ truth for λ is a pair 〈Q, ψ〉 so that Q ⊆ Hλ, ψ is a first order formula with one free variable, and there exists B ⊆ Hλ+ such that (Hλ+; ε, B) $(H_{\lambda +};\in ,B)\vDash \psi [Q]$ . A cardinal λ is $\Sigma _{1}^{2}$ indescribable just in case that for every $\Sigma _{1}^{2}$ truth 〈Q, ψ〉 for λ, there exists $\overline{\lambda}<\lambda $ so that $\overline{\lambda}$ is a cardinal and $\langle Q\cap H_{\overline{\lambda}},\psi \rangle $ is a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  17
    Forcing axioms, approachability, and stationary set reflection.Sean D. Cox - 2021 - Journal of Symbolic Logic 86 (2):499-530.
    We prove a variety of theorems about stationary set reflection and concepts related to internal approachability. We prove that an implication of Fuchino–Usuba relating stationary reflection to a version of Strong Chang’s Conjecture cannot be reversed; strengthen and simplify some results of Krueger about forcing axioms and approachability; and prove that some other related results of Krueger are sharp. We also adapt some ideas of Woodin to simplify and unify many arguments in the literature involving preservation of forcing (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  78
    A non-implication between fragments of Martin’s Axiom related to a property which comes from Aronszajn trees.Teruyuki Yorioka - 2010 - Annals of Pure and Applied Logic 161 (4):469-487.
    We introduce a property of forcing notions, called the anti-, which comes from Aronszajn trees. This property canonically defines a new chain condition stronger than the countable chain condition, which is called the property . In this paper, we investigate the property . For example, we show that a forcing notion with the property does not add random reals. We prove that it is consistent that every forcing notion with the property has precaliber 1 and for (...) notions with the property fails. This negatively answers a part of one of the classical problems about implications between fragments of. (shrink)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  17.  20
    Aronszajn tree preservation and bounded forcing axioms.Gunter Fuchs - 2021 - Journal of Symbolic Logic 86 (1):293-315.
    I investigate the relationships between three hierarchies of reflection principles for a forcing class $\Gamma $ : the hierarchy of bounded forcing axioms, of $\Sigma ^1_1$ -absoluteness, and of Aronszajn tree preservation principles. The latter principle at level $\kappa $ says that whenever T is a tree of height $\omega _1$ and width $\kappa $ that does not have a branch of order type $\omega _1$, and whenever ${\mathord {\mathbb P}}$ is a forcing notion in $\Gamma $, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  44
    Forcing under Anti‐Foundation Axiom: An expression of the stalks.Sato Kentaro - 2006 - Mathematical Logic Quarterly 52 (3):295-314.
    We introduce a new simple way of defining the forcing method that works well in the usual setting under FA, the Foundation Axiom, and moreover works even under Aczel's AFA, the Anti-Foundation Axiom. This new way allows us to have an intuition about what happens in defining the forcing relation. The main tool is H. Friedman's method of defining the extensional membership relation ∈ by means of the intensional membership relation ε .Analogously to the usual (...) and the usual generic extension for FA-models, we can justify the existence of generic filters and can obtain the Forcing Theorem and the Minimal Model Theorem with some modifications. These results are on the line of works to investigate whether model theory for AFA-set theory can be developed in a similar way to that for FA-set theory.Aczel pointed out that the quotient of transition systems by the largest bisimulation and transition relations have the essentially same theory as the set theory with AFA. Therefore, we could hope that, by using our new method, some open problems about transition systems turn out to be consistent or independent. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  19. On the equivalence of certain consequences of the proper forcing axiom.Peter Nyikos & Leszek Piątkiewicz - 1995 - Journal of Symbolic Logic 60 (2):431-443.
    We prove that a number of axioms, each a consequence of PFA (the Proper Forcing Axiom) are equivalent. In particular we show that TOP (the Thinning-out Principle as introduced by Baumgartner in the Handbook of set-theoretic topology), is equivalent to the following statement: If I is an ideal on ω 1 with ω 1 generators, then there exists an uncountable $X \subseteq \omega_1$ , such that either [ X] ω ∩ I = ⊘ or $\lbrack X\rbrack^\omega \subseteq I$.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark  
  20.  26
    Hierarchies of forcing axioms, the continuum hypothesis and square principles.Gunter Fuchs - 2018 - Journal of Symbolic Logic 83 (1):256-282.
    I analyze the hierarchies of the bounded and the weak bounded forcing axioms, with a focus on their versions for the class of subcomplete forcings, in terms of implications and consistency strengths. For the weak hierarchy, I provide level-by-level equiconsistencies with an appropriate hierarchy of partially remarkable cardinals. I also show that the subcomplete forcing axiom implies Larson’s ordinal reflection principle atω2, and that its effect on the failure of weak squares is very similar to that of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  21.  28
    Strongly uplifting cardinals and the boldface resurrection axioms.Joel David Hamkins & Thomas A. Johnstone - 2017 - Archive for Mathematical Logic 56 (7-8):1115-1133.
    We introduce the strongly uplifting cardinals, which are equivalently characterized, we prove, as the superstrongly unfoldable cardinals and also as the almost-hugely unfoldable cardinals, and we show that their existence is equiconsistent over ZFC with natural instances of the boldface resurrection axiom, such as the boldface resurrection axiom for proper forcing.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22.  66
    A characterization of Martin's axiom in terms of absoluteness.Joan Bagaria - 1997 - Journal of Symbolic Logic 62 (2):366-372.
    Martin's axiom is equivalent to the statement that the universe is absolute under ccc forcing extensions for Σ 1 sentences with a subset of $\kappa, \kappa , as a parameter.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  23.  27
    Bounded forcing axioms and the continuum.David Asperó & Joan Bagaria - 2001 - Annals of Pure and Applied Logic 109 (3):179-203.
    We show that bounded forcing axioms are consistent with the existence of -gaps and thus do not imply the Open Coloring Axiom. They are also consistent with Jensen's combinatorial principles for L at the level ω2, and therefore with the existence of an ω2-Suslin tree. We also show that the axiom we call BMM3 implies 21=2, as well as a stationary reflection principle which has many of the consequences of Martin's Maximum for objects of size 2. Finally, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  24.  67
    Sacks forcing, Laver forcing, and Martin's axiom.Haim Judah, Arnold W. Miller & Saharon Shelah - 1992 - Archive for Mathematical Logic 31 (3):145-161.
    In this paper we study the question assuming MA+⌝CH does Sacks forcing or Laver forcing collapse cardinals? We show that this question is equivalent to the question of what is the additivity of Marczewski's ideals 0. We give a proof that it is consistent that Sacks forcing collapses cardinals. On the other hand we show that Laver forcing does not collapse cardinals.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  25.  17
    Bounded Namba forcing axiom may fail.Jindrich Zapletal - 2018 - Mathematical Logic Quarterly 64 (3):170-172.
    We show that in a σ‐closed forcing extension, the bounded forcing axiom for Namba forcing fails. This answers a question of J. T. Moore.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26.  87
    The bounded proper forcing axiom.Martin Goldstern & Saharon Shelah - 1995 - Journal of Symbolic Logic 60 (1):58-73.
    The bounded proper forcing axiom BPFA is the statement that for any family of ℵ 1 many maximal antichains of a proper forcing notion, each of size ℵ 1 , there is a directed set meeting all these antichains. A regular cardinal κ is called Σ 1 -reflecting, if for any regular cardinal χ, for all formulas $\varphi, "H(\chi) \models`\varphi'"$ implies " $\exists\delta . We investigate several algebraic consequences of BPFA, and we show that the consistency strength (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  27.  49
    Four and a Half Axioms for Finite-Dimensional Quantum Probability.Alexander Wilce - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 281--298.
    It is an old idea, lately out of fashion but now experiencing a revival, that quantum mechanics may best be understood, not as a physical theory with a problematic probabilistic interpretation, but as something closer to a probability calculus per se. However, from this angle, the rather special C *-algebraic apparatus of quantum probability theory stands in need of further motivation. One would like to find additional principles, having clear physical and/or probabilistic content, on the basis of which this apparatus (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  28.  42
    Forcing axioms, supercompact cardinals, singular cardinal combinatorics.Matteo Viale - 2008 - Bulletin of Symbolic Logic 14 (1):99-113.
    The purpose of this communication is to present some recent advances on the consequences that forcing axioms and large cardinals have on the combinatorics of singular cardinals. I will introduce a few examples of problems in singular cardinal combinatorics which can be fruitfully attacked using ideas and techniques coming from the theory of forcing axioms and then translate the results so obtained in suitable large cardinals properties.The first example I will treat is the proof that the proper (...) axiom PFA implies the singular cardinal hypothesis SCH, this will easily lead to a new proof of Solovay's theorem that SCH holds above a strongly compact cardinal. I will also outline how some of the ideas involved in these proofs can be used as means to evaluate the “saturation” properties of models of strong forcing axioms like MM or PFA.The second example aims to show that the transfer principle ↠ fails assuming Martin's Maximum MM. Also in this case the result can be translated in a large cardinal property, however this requires a familiarity with a rather large fragment of Shelah's pcf-theory.Only sketchy arguments will be given, the reader is referred to the forthcoming [25] and [38] for a thorough analysis of these problems and for detailed proofs. (shrink)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  29.  63
    The club principle and the distributivity number.Heike Mildenberger - 2011 - Journal of Symbolic Logic 76 (1):34 - 46.
    We give an affirmative answer to Brendle's and Hrušák's question of whether the club principle together with h > N₁ is consistent. We work with a class of axiom A forcings with countable conditions such that q ≥ n p is determined by finitely many elements in the conditions p and q and that all strengthenings of a condition are subsets, and replace many names by actual sets. There are two types of technique: one for tree-like forcings and one (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  30.  22
    Philosophy of Inductive Sciences, founded upon their history. Book 3, Chapter 4.William Whewell, A. Nikiforov, I. Kasavin & T. Sokolova - 2016 - Epistemology and Philosophy of Science 49 (3):198-215.
    The text continues the translation series of William Whewell's (1794-1866) book «The Philosophy of the Inductive Sciences, founded upon their history» (Book III The Philosophy of the Mechanical Sciences, Chapter VI On the Establishment of the Principles of Statics). The chapter devoted to the establishment of such concepts of statics and dynamics, as equilibrium, measure of statical forces, gravity, oblique forces, and the parallelogram of forces. Whewell substantiates the fundamental principles of mechanics by analogy with the axioms of geometry, but (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  31.  28
    A Validation of Knowledge: A New, Objective Theory of Axioms, Causality, Meaning, Propositions, Mathematics, and Induction.Ronald Pisaturo - 2020 - Norwalk, Connecticut: Prime Mover Press.
    This book seeks to offer original answers to all the major open questions in epistemology—as indicated by the book’s title. These questions and answers arise organically in the course of a validation of the entire corpus of human knowledge. The book explains how we know what we know, and how well we know it. The author presents a positive theory, motivated and directed at every step not by a need to reply to skeptics or subjectivists, but by the need of (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  32.  60
    Hierarchies of forcing axioms I.Itay Neeman & Ernest Schimmerling - 2008 - Journal of Symbolic Logic 73 (1):343-362.
    We prove new upper bound theorems on the consistency strengths of SPFA (θ), SPFA(θ-linked) and SPFA(θ⁺-cc). Our results are in terms of (θ, Γ)-subcompactness, which is a new large cardinal notion that combines the ideas behind subcompactness and Γ-indescribability. Our upper bound for SPFA(c-linked) has a corresponding lower bound, which is due to Neeman and appears in his follow-up to this paper. As a corollary, SPFA(c-linked) and PFA(c-linked) are each equiconsistent with the existence of a $\Sigma _{1}^{2}$ -indescribable cardinal. Our (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  33.  75
    The strength of Mac Lane set theory.A. R. D. Mathias - 2001 - Annals of Pure and Applied Logic 110 (1-3):107-234.
    Saunders Mac Lane has drawn attention many times, particularly in his book Mathematics: Form and Function, to the system of set theory of which the axioms are Extensionality, Null Set, Pairing, Union, Infinity, Power Set, Restricted Separation, Foundation, and Choice, to which system, afforced by the principle, , of Transitive Containment, we shall refer as . His system is naturally related to systems derived from topos-theoretic notions concerning the category of sets, and is, as Mac Lane emphasises, one that is (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  34. The Idea of a Vital Principle in Yoga, Āyurveda and the Second Axiom of Thermodynamics.Donnalee Dox - 2025 - Journal of World Philosophies 9 (2).
    _This inquiry joins the idea of a vital principle at work in two systems for spiritual liberation and medical treatment, South Asian Yoga and Āyurveda, to an interpretation of the second axiom of thermodynamics applied to open systems, a predictive mathematical account of matter. Though often first associated with philosophy or religion, Yoga and Āyurveda take human physiology as a function of the natural world, as does thermodynamics. The idea of “life force” or “vitality” emerges at the intersection of (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  35. A Characterization of Permutation Models in Terms of Forcing.Eric J. Hall - 2002 - Notre Dame Journal of Formal Logic 43 (3):157-168.
    We show that if N and M are transitive models of ZFA such that N M, N and M have the same kernel and same set of atoms, and M AC, then N is a Fraenkel-Mostowski-Specker (FMS) submodel of M if and only if M is a generic extension of N by some almost homogeneous notion of forcing. We also develop a slightly modified notion of FMS submodels to characterize the case where M is a generic extension of N (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  36. A Natural Model of the Multiverse Axioms.Victoria Gitman & Joel David Hamkins - 2010 - Notre Dame Journal of Formal Logic 51 (4):475-484.
    If ZFC is consistent, then the collection of countable computably saturated models of ZFC satisfies all of the Multiverse Axioms of Hamkins.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  37.  35
    Forcing with Sequences of Models of Two Types.Itay Neeman - 2014 - Notre Dame Journal of Formal Logic 55 (2):265-298.
    We present an approach to forcing with finite sequences of models that uses models of two types. This approach builds on earlier work of Friedman and Mitchell on forcing to add clubs in cardinals larger than $\aleph_{1}$, with finite conditions. We use the two-type approach to give a new proof of the consistency of the proper forcing axiom. The new proof uses a finite support forcing, as opposed to the countable support iteration in the standard (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  38.  26
    Operations, climbability and the proper forcing axiom.Yasuo Yoshinobu - 2013 - Annals of Pure and Applied Logic 164 (7-8):749-762.
    In this paper we show that the Proper Forcing Axiom is preserved under forcing over any poset PP with the following property: In the generalized Banach–Mazur game over PP of length , Player II has a winning strategy which depends only on the current position and the ordinal indicating the number of moves made so far. By the current position we mean: The move just made by Player I for a successor stage, or the infimum of all (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  39.  45
    Semi-proper forcing, remarkable cardinals, and Bounded Martin's Maximum.Ralf Schindler - 2004 - Mathematical Logic Quarterly 50 (6):527-532.
    We show that L absoluteness for semi-proper forcings is equiconsistent with the existence of a remarkable cardinal, and hence by [6] with L absoluteness for proper forcings. By [7], L absoluteness for stationary set preserving forcings gives an inner model with a strong cardinal. By [3], the Bounded Semi-Proper Forcing Axiom is equiconsistent with the Bounded Proper Forcing Axiom , which in turn is equiconsistent with a reflecting cardinal. We show that Bounded Martin's Maximum is much (...)
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  40.  18
    Fields of Force: Murdoch on Axioms, Duties, and Eros.Mark Hopwood - 2019 - In Nora Hämäläinen & Gillian Dooley (eds.), Reading Iris Murdoch’s Metaphysics as a Guide to Morals. Springer Verlag. pp. 243-260.
    Iris Murdoch’s interpreters have often tried to read her as putting forward an alternative form of ethical foundationalism. On this reading, Murdoch is taken to be proposing ‘loving attention’ or ‘the Good’ as a fundamental moral principle that would play the same unifying role as the principle of utility or the categorical imperative. Here, I argue that a careful reading of chapter 17 of Metaphysics as a Guide to Morals shows that the foundationalist reading is untenable. Murdoch, I suggest, is (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. (1 other version)Gödel's conceptual realism.Donald A. Martin - 2005 - Bulletin of Symbolic Logic 11 (2):207-224.
    Kurt Gödel is almost as famous—one might say “notorious”—for his extreme platonist views as he is famous for his mathematical theorems. Moreover his platonism is not a myth; it is well-documented in his writings. Here are two platonist declarations about set theory, the first from his paper about Bertrand Russell and the second from the revised version of his paper on the Continuum Hypotheses.Classes and concepts may, however, also be conceived as real objects, namely classes as “pluralities of things” or (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  42.  53
    Freiling's axioms of symmetry in a general setting and some applications.Athanassios Tzouvaras - 2001 - Archive for Mathematical Logic 40 (2):131-145.
    We formulate C. Freiling's axioms of symmetry for general second-order structures with respect to a certain ideal of small sets contained in them and find several equivalent formulations of the principles. Then we focus on particular models, namely saturated and recursively saturated ones, and show that they are symmetric with respect to appropriate classes of small sets when their second-order part consists of definable sets. Some asymmetric models are also exhibited as well as partial asymmetric ones constructed by forcing.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  67
    An exploration of the partial respects in which an axiom system recognizing solely addition as a total function can verify its own consistency.Dan E. Willard - 2005 - Journal of Symbolic Logic 70 (4):1171-1209.
    This article will study a class of deduction systems that allow for a limited use of the modus ponens method of deduction. We will show that it is possible to devise axiom systems α that can recognize their consistency under a deduction system D provided that: (1) α treats multiplication as a 3-way relation (rather than as a total function), and that (2) D does not allow for the use of a modus ponens methodology above essentially the levels of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  44.  40
    The equivalence of Axiom (∗)+ and Axiom (∗)++.W. Hugh Woodin - forthcoming - Journal of Mathematical Logic.
    Asperó and Schindler have completely solved the Axiom [Formula: see text] vs. [Formula: see text] problem. They have proved that if [Formula: see text] holds then Axiom [Formula: see text] holds, with no additional assumptions. The key question now concerns the relationship between [Formula: see text] and Axiom [Formula: see text]. This is because the foundational issues raised by the problem of Axiom [Formula: see text] vs. [Formula: see text] arguably persist in the problem of (...) [Formula: see text] vs. [Formula: see text]. The first of our two main theorems is that Axiom [Formula: see text] is equivalent to Axiom [Formula: see text], and as a corollary we show that Axiom [Formula: see text] fails in all the known models of [Formula: see text]. This suggests that [Formula: see text] actually refutes Axiom [Formula: see text]. Our second main theorem is that the [Formula: see text] Conjecture holds assuming [Formula: see text]. This is the strongest partial result known on this conjecture which is one of the central open problems of [Formula: see text]-theory and [Formula: see text]-logic. These results identify a fundamental asymmetry between the Continuum Hypothesis and any axiom which is both [Formula: see text]-expressible and which implies [Formula: see text], on the basis of generic absoluteness for the simplest of the nontrivial sentences of Third-Order Number Theory. These are the [Formula: see text]-sentences with no parameters. Such sentences are those which simply assert the existence of a set [Formula: see text] for which some property involving only quantification over [Formula: see text] holds. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  45. The Necessary Maximality Principle for c. c. c. forcing is equiconsistent with a weakly compact cardinal.Joel D. Hamkins & W. Hugh Woodin - 2005 - Mathematical Logic Quarterly 51 (5):493-498.
    The Necessary Maximality Principle for c. c. c. forcing with real parameters is equiconsistent with the existence of a weakly compact cardinal. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim).
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  46.  16
    Mathias and silver forcing parametrized by density.Giorgio Laguzzi, Heike Mildenberger & Brendan Stuber-Rousselle - 2023 - Archive for Mathematical Logic 62 (7):965-990.
    We define and investigate versions of Silver and Mathias forcing with respect to lower and upper density. We focus on properness, Axiom A, chain conditions, preservation of cardinals and adding Cohen reals. We find rough forcings that collapse $$2^\omega $$ 2 ω to $$\omega $$ ω, while others are surprisingly gentle. We also study connections between regularity properties induced by these parametrized forcing notions and the Baire property.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  47. Ultrapowers without the axiom of choice.Mitchell Spector - 1988 - Journal of Symbolic Logic 53 (4):1208-1219.
    A new method is presented for constructing models of set theory, using a technique of forming pseudo-ultrapowers. In the presence of the axiom of choice, the traditional ultrapower construction has proven to be extremely powerful in set theory and model theory; if the axiom of choice is not assumed, the fundamental theorem of ultrapowers may fail, causing the ultrapower to lose almost all of its utility. The pseudo-ultrapower is designed so that the fundamental theorem holds even if choice (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  48.  19
    Set forcing and strong condensation for H.Liuzhen Wu - 2015 - Journal of Symbolic Logic 80 (1):56-84.
    The Axiom of Strong Condensation, first introduced by Woodin in [14], is an abstract version of the Condensation Lemma ofL. In this paper, we construct a set-sized forcing to obtain Strong Condensation forH. As an application, we show that “ZFC + Axiom of Strong Condensation +”is consistent, which answers a question in [14]. As another application, we give a partial answer to a question of Jech by proving that “ZFC + there is a supercompact cardinal + any (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  49.  23
    New methods in forcing iteration and applications.Rahman Mohammadpour - 2023 - Bulletin of Symbolic Logic 29 (2):300-302.
    The Theme. Strong forcing axioms like Martin’s Maximum give a reasonably satisfactory structural analysis of $H(\omega _2)$. A broad program in modern Set Theory is searching for strong forcing axioms beyond $\omega _1$. In other words, one would like to figure out the structural properties of taller initial segments of the universe. However, the classical techniques of forcing iterations seem unable to bypass the obstacles, as the resulting forcings axioms beyond $\omega _1$ have not thus far been (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  31
    On resurrection axioms.Konstantinos Tsaprounis - 2015 - Journal of Symbolic Logic 80 (2):587-608.
    The resurrection axioms are forms of forcing axioms that were introduced recently by Hamkins and Johnstone, who developed on earlier ideas of Chalons and Veličković. In this note, we introduce a stronger form of resurrection and show that it gives rise to families of axioms which are consistent relative to extendible cardinals, and which imply the strongest known instances of forcing axioms, such as Martin’s Maximum++. In addition, we study the unbounded resurrection postulates in terms of consistency lower (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
1 — 50 / 965