Results for ' Classical Kleene Lattice'

947 found
Order:
  1.  54
    Subprevarieties Versus Extensions. Application to the Logic of Paradox.Alexej P. Pynko - 2000 - Journal of Symbolic Logic 65 (2):756-766.
    In the present paper we prove that the poset of all extensions of the logic defined by a class of matrices whose sets of distinguished values are equationally definable by their algebra reducts is the retract, under a Galois connection, of the poset of all subprevarieties of the prevariety generated by the class of the algebra reducts of the matrices involved. We apply this general result to the problem of finding and studying all extensions of the logic of paradox. In (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  2.  57
    On Priest's logic of paradox.Alexej P. Pynko - 1995 - Journal of Applied Non-Classical Logics 5 (2):219-225.
    The present paper concerns a technical study of PRIEST'S logic of paradox [Pri 79], We prove that this logic has no proper paraconsistent strengthening. It is also proved that the mentioned logic is the largest paraconsistent one satisfaying TARSKI'S conditions for the classical conjunction and disjunction together with DE MORGAN'S laws for negation. Finally, we obtain for the logic of paradox an algebraic completeness result related to Kleene lattices.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  3.  29
    Logics of upsets of De Morgan lattices.Adam Přenosil - forthcoming - Mathematical Logic Quarterly.
    We study logics determined by matrices consisting of a De Morgan lattice with an upward closed set of designated values, such as the logic of non‐falsity preservation in a given finite Boolean algebra and Shramko's logic of non‐falsity preservation in the four‐element subdirectly irreducible De Morgan lattice. The key tool in the study of these logics is the lattice‐theoretic notion of an n‐filter. We study the logics of all (complete, consistent, and classical) n‐filters on De Morgan (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  41
    From semirings to residuated Kleene lattices.Peter Jipsen - 2004 - Studia Logica 76 (2):291 - 303.
    We consider various classes of algebras obtained by expanding idempotent semirings with meet, residuals and Kleene-*. An investigation of congruence properties (e-permutability, e-regularity, congruence distributivity) is followed by a section on algebraic Gentzen systems for proving inequalities in idempotent semirings, in residuated lattices, and in (residuated) Kleene lattices (with cut). Finally we define (one-sorted) residuated Kleene lattices with tests to complement two-sorted Kleene algebras with tests.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  5. Classical extensions of intuitionistic mathematics.S. C. Kleene - 1965 - In Yehoshua Bar-Hillel (ed.), Logic, methodology and philosophy of science. Amsterdam,: North-Holland Pub. Co.. pp. 2--31.
  6.  35
    The Upper Semi-Lattice of Degrees of Recursive Unsolvability.S. C. Kleene & Emil L. Post - 1956 - Journal of Symbolic Logic 21 (4):407-408.
  7.  83
    The mathematical work of S. C. Kleene.J. R. Shoenfield & S. C. Kleene - 1995 - Bulletin of Symbolic Logic 1 (1):8-43.
    §1. The origins of recursion theory. In dedicating a book to Steve Kleene, I referred to him as the person who made recursion theory into a theory. Recursion theory was begun by Kleene's teacher at Princeton, Alonzo Church, who first defined the class of recursive functions; first maintained that this class was the class of computable functions ; and first used this fact to solve negatively some classical problems on the existence of algorithms. However, it was (...) who, in his thesis and in his subsequent attempts to convince himself of Church's Thesis, developed a general theory of the behavior of the recursive functions. He continued to develop this theory and extend it to new situations throughout his mathematical career. Indeed, all of the research which he did had a close relationship to recursive functions.Church's Thesis arose in an accidental way. In his investigations of a system of logic which he had invented, Church became interested in a class of functions which he called the λ-definable functions. Initially, Church knew that the successor function and the addition function were λ-definable, but not much else. During 1932, Kleene gradually showed1 that this class of functions was quite extensive; and these results became an important part of his thesis 1935a. (shrink)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  8.  13
    Representability of Kleene Posets and Kleene Lattices.Ivan Chajda, Helmut Länger & Jan Paseka - 2024 - Studia Logica 112 (6):1281-1317.
    A Kleene lattice is a distributive lattice equipped with an antitone involution and satisfying the so-called normality condition. These lattices were introduced by J. A. Kalman. We extended this concept also for posets with an antitone involution. In our recent paper (Chajda, Länger and Paseka, in: Proceeding of 2022 IEEE 52th International Symposium on Multiple-Valued Logic, Springer, 2022), we showed how to construct such Kleene lattices or Kleene posets from a given distributive lattice or (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  5
    On the Structure of Bochvar Algebras.Stefano Bonzio & Michele Pra Baldi - forthcoming - Review of Symbolic Logic:1-27.
    Bochvar algebras consist of the quasivariety $\mathsf {BCA}$ playing the role of equivalent algebraic semantics for Bochvar (external) logic, a logical formalism introduced by Bochvar [4] in the realm of (weak) Kleene logics. In this paper, we provide an algebraic investigation of the structure of Bochvar algebras. In particular, we prove a representation theorem based on Płonka sums and investigate the lattice of subquasivarieties, showing that Bochvar (external) logic has only one proper extension (apart from classical logic), (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  64
    Popper K. R.. On the theory of deduction, Part I. Derivation and its generalizations. Koninklijke Nederlandsche Akademie van Wetenschappen, Proceedings of the section of sciences, vol. 51 , pp. 173–183; also Indagationes mathematicae, vol. 10 , pp. 44–54.Popper K. R.. On the theory of deduction, Part II. The definitions of classical and intuitionist negation. Koninklijke Nederlandsche Akademie van Wetenschappen, Proceedings of the section of sciences, vol. 51 , pp. 322–331; also ibid., pp. 111–120.Popper K. R.. The trivialization of mathematical logic. Library of the Xlh International Congress of Philosophy . Vol. I. Proceedings of the Congress. Preprint 1948, pp. 510–515. [REVIEW]S. C. Kleene - 1949 - Journal of Symbolic Logic 14 (1):62-63.
  11.  14
    Approximating Approximate Reasoning: Fuzzy Sets and the Ershov Hierarchy.Nikolay Bazhenov, Manat Mustafa, Sergei Ospichev & Luca San Mauro - 2021 - In Sujata Ghosh & Thomas Icard (eds.), Logic, Rationality, and Interaction: 8th International Workshop, Lori 2021, Xi’an, China, October 16–18, 2021, Proceedings. Springer Verlag. pp. 1-13.
    Computability theorists have introduced multiple hierarchies to measure the complexity of sets of natural numbers. The Kleene Hierarchy classifies sets according to the first-order complexity of their defining formulas. The Ershov Hierarchy classifies Δ20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta ^0_2$$\end{document} sets with respect to the number of mistakes that are needed to approximate them. Biacino and Gerla extended the Kleene Hierarchy to the realm of fuzzy sets, whose membership functions range in a complete (...) L. In this paper, we combine the Ershov Hierarchy and fuzzy set theory, by introducing and investigating the Fuzzy Ershov Hierarchy. In particular, we focus on the fuzzy n-c.e. sets which form the finite levels of this hierarchy. Intuitively, a fuzzy set is n-c.e. if its membership function can be approximated by changing monotonicity at most n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} times. We prove that the Fuzzy Ershov Hierarchy does not collapse; that, in analogy with the classical case, each fuzzy n-c.e. set can be represented as a Boolean combination of fuzzy c.e. sets; but that, contrary to the classical case, the Fuzzy Ershov Hierarchy does not exhaust the class of all Δ20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta ^0_2$$\end{document} fuzzy sets. (shrink)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  12.  62
    Compatibility and accessibility: lattice representations for semantics of non-classical and modal logics.Wesley Holliday - 2022 - In David Fernández Duque & Alessandra Palmigiano (eds.), Advances in Modal Logic, Vol. 14. College Publications. pp. 507-529.
    In this paper, we study three representations of lattices by means of a set with a binary relation of compatibility in the tradition of Ploščica. The standard representations of complete ortholattices and complete perfect Heyting algebras drop out as special cases of the first representation, while the second covers arbitrary complete lattices, as well as complete lattices equipped with a negation we call a protocomplementation. The third topological representation is a variant of that of Craig, Haviar, and Priestley. We then (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  13.  49
    On All Strong Kleene Generalizations of Classical Logic.Stefan Wintein - 2016 - Studia Logica 104 (3):503-545.
    By using the notions of exact truth and exact falsity, one can give 16 distinct definitions of classical consequence. This paper studies the class of relations that results from these definitions in settings that are paracomplete, paraconsistent or both and that are governed by the Strong Kleene schema. Besides familiar logics such as Strong Kleene logic, the Logic of Paradox and First Degree Entailment, the resulting class of all Strong Kleene generalizations of classical logic also (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  14.  21
    Automorphisms of the Lattice of Classical Modal Logics.Adrian Soncodi - 2016 - Studia Logica 104 (2):249-276.
    In this paper we analyze the propositional extensions of the minimal classical modal logic system E, which form a lattice denoted as CExtE. Our method of analysis uses algebraic calculations with canonical forms, which are a generalization of the normal forms applicable to normal modal logics. As an application, we identify a group of automorphisms of CExtE that is isomorphic to the symmetric group S4.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  38
    Kleene S. C. and Post Emil L.. The upper semi-lattice of degrees of recursive unsolvability. Annals of mathematics, ser. 2 vol. 59 , pp. 379–407. [REVIEW]Hartley Rogers - 1956 - Journal of Symbolic Logic 21 (4):407-408.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  16. Normality operators and Classical Recapture in Extensions of Kleene Logics.Ciuni Roberto & Massimiliano Carrara - forthcoming - Logic Journal of the IGPL.
    In this paper, we approach the problem of classical recapture for LP and K3 by using normality operators. These generalize the consistency and determinedness operators from Logics of Formal Inconsistency and Underterminedness, by expressing, in any many-valued logic, that a given formula has a classical truth value (0 or 1). In particular, in the rst part of the paper we introduce the logics LPe and Ke3 , which extends LP and K3 with normality operators, and we establish a (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  17.  35
    The Lattice of Super-Belnap Logics.Adam Přenosil - 2023 - Review of Symbolic Logic 16 (1):114-163.
    We study the lattice of extensions of four-valued Belnap–Dunn logic, called super-Belnap logics by analogy with superintuitionistic logics. We describe the global structure of this lattice by splitting it into several subintervals, and prove some new completeness theorems for super-Belnap logics. The crucial technical tool for this purpose will be the so-called antiaxiomatic (or explosive) part operator. The antiaxiomatic (or explosive) extensions of Belnap–Dunn logic turn out to be of particular interest owing to their connection to graph theory: (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  18.  29
    Weak Kleene Logic and Topic-Sensitive Logics.Roberto Ciuni - forthcoming - Logic and Logical Philosophy.
    This paper makes first steps toward a systematic investigation of how pertinence to topic contributes to determine deductively valid reasoning along with preservation of designated values. I start from the interpretation of Weak Kleene Logic WKL as a reasoning tool that preserves truth and topic pertinence, which is offered by Jc Beall. I keep Beall’s motivations and I argue that WKL cannot meet them in a satisfying way. In light of this, I propose an informal definition of a topic-sensitive (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  77
    Relational Semantics for Kleene Logic and Action Logic.Katalin Bimbó & J. ~Michael Dunn - 2005 - Notre Dame Journal of Formal Logic 46 (4):461-490.
    Kleene algebras and action logic were proposed to be solutions to the finite axiomatization problem of the algebra of regular sets (of strings). They are treated here as nonclassical logics—with Hilbert-style axiomatizations and semantics. We also provide intuitive accounts in terms of information states of the semantics which provide further insights into the formalisms. The three types of "Kripke-style'' semantics which we define develop insights from gaggle theory, and from our four-valued and generalized Kripke semantics for the minimal substructural (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  20.  36
    Extensions of paraconsistent weak Kleene logic.Francesco Paoli & Michele Pra Baldi - forthcoming - Logic Journal of the IGPL.
    Paraconsistent weak Kleene logic is the $3$-valued logic based on the weak Kleene matrices and with two designated values. In this paper, we investigate the poset of prevarieties of generalized involutive bisemilattices, focussing in particular on the order ideal generated by Α$\textrm{lg} $. Applying to this poset a general result by Alexej Pynko, we prove that, exactly like Priest’s logic of paradox, $\textrm{PWK}$ has only one proper nontrivial extension apart from classical logic: $\textrm{PWK}_{\textrm{E}}\textrm{,}$ PWK logic plus explosion. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  21.  86
    Duality and canonical extensions of bounded distributive lattices with operators, and applications to the semantics of non-classical logics I.Viorica Sofronie-Stokkermans - 2000 - Studia Logica 64 (1):93-132.
    The main goal of this paper is to explain the link between the algebraic and the Kripke-style models for certain classes of propositional logics. We start by presenting a Priestley-type duality for distributive lattices endowed with a general class of well-behaved operators. We then show that finitely-generated varieties of distributive lattices with operators are closed under canonical embedding algebras. The results are used in the second part of the paper to construct topological and non-topological Kripke-style models for logics that are (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  22.  50
    Duality and canonical extensions of bounded distributive lattices with operators, and applications to the semantics of non-classical logics II.Viorica Sofronie-Stokkermans - 2000 - Studia Logica 64 (2):151-172.
    The main goal of this paper is to explain the link between the algebraic models and the Kripke-style models for certain classes of propositional non-classical logics. We consider logics that are sound and complete with respect to varieties of distributive lattices with certain classes of well-behaved operators for which a Priestley-style duality holds, and present a way of constructing topological and non-topological Kripke-style models for these types of logics. Moreover, we show that, under certain additional assumptions on the variety (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  23.  24
    Application of Urquhart’s Representation of Lattices to Some Non–classical Logics.Ivo Düntsch & Ewa Orłowska - 2021 - In Ivo Düntsch & Edwin Mares (eds.), Alasdair Urquhart on Nonclassical and Algebraic Logic and Complexity of Proofs. Springer Verlag. pp. 347-366.
    Based on Alasdair Urquhart’s representation of not necessarily distributive bounded lattices we exhibit several discrete dualities in the spirit of the “duality via truth” concept by Orłowska and Rewitzky. We also exhibit a discrete duality for Urquhart’s relevant algebras and their frames.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  24.  30
    The lattice of Belnapian modal logics: Special extensions and counterparts.Sergei P. Odintsov & Stanislav O. Speranski - 2016 - Logic and Logical Philosophy 25 (1):3-33.
    Let K be the least normal modal logic and BK its Belnapian version, which enriches K with ‘strong negation’. We carry out a systematic study of the lattice of logics containing BK based on: • introducing the classes of so-called explosive, complete and classical Belnapian modal logics; • assigning to every normal modal logic three special conservative extensions in these classes; • associating with every Belnapian modal logic its explosive, complete and classical counterparts. We investigate the relationships (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  25.  27
    Polymodal Lattices and Polymodal Logic.John L. Bell - 1996 - Mathematical Logic Quarterly 42 (1):219-233.
    A polymodal lattice is a distributive lattice carrying an n-place operator preserving top elements and certain finite meets. After exploring some of the basic properties of such structures, we investigate their freely generated instances and apply the results to the corresponding logical systems — polymodal logics — which constitute natural generalizations of the usual systems of modal logic familiar from the literature. We conclude by formulating an extension of Kripke semantics to classical polymodal logic and proving soundness (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  26. Maksimova, Relevance and the Study of Lattices of Non-classical Logics.Sergei Odintsov - 2018 - In Larisa Maksimova on Implication, Interpolation, and Definability. Cham, Switzerland: Springer Verlag.
    No categories
     
    Export citation  
     
    Bookmark  
  27.  47
    Lattice-gas cellular automaton models for biology: From fluids to cells.Dieter Wolf-Gladrow - 2010 - Acta Biotheoretica 58 (4):329-340.
    Lattice-gas cellular automaton (LGCA) and lattice Boltzmann (LB) models are promising models for studying emergent behaviour of transport and interaction processes in biological systems. In this chapter, we will emphasise the use of LGCA/LB models and the derivation and analysis of LGCA models ranging from the classical example dynamics of fluid flow to clotting phenomena in cerebral aneurysms and the invasion of tumour cells.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  28.  18
    The lattice of all 4-valued implicative expansions of Belnap–Dunn logic containing Routley and Meyer’s basic logic Bd.Gemma Robles & José M. Méndez - 2024 - Logic Journal of the IGPL 32 (3):493-516.
    The well-known logic first degree entailment logic (FDE), introduced by Belnap and Dunn, is defined with |$\wedge $|⁠, |$\vee $| and |$\sim $| as the sole primitive connectives. The aim of this paper is to establish the lattice formed by the class of all 4-valued C-extending implicative expansions of FDE verifying the axioms and rules of Routley and Meyer’s basic logic B and its useful disjunctive extension B|$^{\textrm {d}}$|⁠. It is to be noted that Boolean negation (so, classical (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29. A fundamental non-classical logic.Wesley Holliday - 2023 - Logics 1 (1):36-79.
    We give a proof-theoretic as well as a semantic characterization of a logic in the signature with conjunction, disjunction, negation, and the universal and existential quantifiers that we suggest has a certain fundamental status. We present a Fitch-style natural deduction system for the logic that contains only the introduction and elimination rules for the logical constants. From this starting point, if one adds the rule that Fitch called Reiteration, one obtains a proof system for intuitionistic logic in the given signature; (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  30.  81
    (1 other version)The lattice of modal logics: An algebraic investigation.W. J. Blok - 1980 - Journal of Symbolic Logic 45 (2):221-236.
    Modal logics are studied in their algebraic disguise of varieties of so-called modal algebras. This enables us to apply strong results of a universal algebraic nature, notably those obtained by B. Jonsson. It is shown that the degree of incompleteness with respect to Kripke semantics of any modal logic containing the axiom □ p → p or containing an axiom of the form $\square^mp \leftrightarrow\square^{m + 1}p$ for some natural number m is 2 ℵ 0 . Furthermore, we show that (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  31.  32
    Lattice-ordered Abelian groups and perfect mv-algebras: A topos-theoretic perspective.Olivia Caramello & Anna Carla Russo - 2016 - Bulletin of Symbolic Logic 22 (2):170-214.
    We establish, generalizing Di Nola and Lettieri’s categorical equivalence, a Morita-equivalence between the theory of lattice-ordered abelian groups and that of perfect MV-algebras. Further, after observing that the two theories are not bi-interpretable in the classical sense, we identify, by considering appropriate topos-theoretic invariants on their common classifying topos, three levels of bi-interpretability holding for particular classes of formulas: irreducible formulas, geometric sentences, and imaginaries. Lastly, by investigating the classifying topos of the theory of perfect MV-algebras, we obtain (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  67
    Classical and constructive hierarchies in extended intuitionistic analysis.Joan Rand Moschovakis - 2003 - Journal of Symbolic Logic 68 (3):1015-1043.
    This paper introduces an extension A of Kleene's axiomatization of Brouwer's intuitionistic analysis, in which the classical arithmetical and analytical hierarchies are faithfully represented as hierarchies of the domains of continuity. A domain of continuity is a relation R(α) on Baire space with the property that every constructive partial functional defined on {α : R(α)} is continuous there. The domains of continuity for A coincide with the stable relations (those equivalent in A to their double negations), while every (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  33.  30
    A remark on functional completeness of binary expansions of Kleene’s strong 3-valued logic.Gemma Robles & José M. Méndez - 2022 - Logic Journal of the IGPL 30 (1):21-33.
    A classical result by Słupecki states that a logic L is functionally complete for the 3-element set of truth-values THREE if, in addition to functionally including Łukasiewicz’s 3-valued logic Ł3, what he names the ‘$T$-function’ is definable in L. By leaning upon this classical result, we prove a general theorem for defining binary expansions of Kleene’s strong logic that are functionally complete for THREE.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  34.  41
    Metainferential Reasoning on Strong Kleene Models.Andreas Fjellstad - 2021 - Journal of Philosophical Logic 51 (6):1327-1344.
    Barrio et al. (_Journal of Philosophical Logic_, _49_(1), 93–120, 2020 ) and Pailos (_Review of Symbolic Logic_, _2020_(2), 249–268, 2020 ) develop an approach to define various metainferential hierarchies on strong Kleene models by transferring the idea of distinct standards for premises and conclusions from inferences to metainferences. In particular, they focus on a hierarchy named the \(\mathbb {S}\mathbb {T}\) -hierarchy where the inferential logic at the bottom of the hierarchy is the non-transitive logic ST but where each subsequent (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  35.  8
    Algebras, Lattices, and Varieties.Ralph McKenzie, McNulty N., F. George & Walter F. Taylor - 1987 - Wadsworth & Brooks.
    This book presents the foundations of a general theory of algebras. Often called “universal algebra”, this theory provides a common framework for all algebraic systems, including groups, rings, modules, fields, and lattices. Each chapter is replete with useful illustrations and exercises that solidify the reader's understanding. The book begins by developing the main concepts and working tools of algebras and lattices, and continues with examples of classical algebraic systems like groups, semigroups, monoids, and categories. The essence of the book (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  36. Semantical analysis of weak Kleene logics.Roberto Ciuni & Massimiliano Carrara - 2019 - Journal of Applied Non-Classical Logics 29 (1):1-36.
    This paper presents a semantical analysis of the Weak Kleene Logics Kw3 and PWK from the tradition of Bochvar and Halldén. These are three-valued logics in which a formula takes the third value if at least one of its components does. The paper establishes two main results: a characterisation result for the relation of logical con- sequence in PWK – that is, we individuate necessary and sufficient conditions for a set.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  37.  67
    Omniscience in Łukasiewicz’s, Kleene’s and Blau’s Three-Valued Logics.Stamatios Gerogiorgakis - 2011 - Polish Journal of Philosophy 5 (1):59-78.
    In this paper several assumptions concerning omniscience and future contingents on the one side, and omniscience and self-reference on the other, areexamined with respect to a classical and a three-valued semantic setting (the latter pertains especially to Łukasiewicz’s, Kleene’s and Blau’s three-valued logics).Interesting features of both settings are highlighted and their basic assumptions concerning omniscience are explored. To generate a context in which the notion of omniscience does not deviate from some basic intuitions, two special futurity operators are (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  38.  63
    The lattice of distributive closure operators over an algebra.Josep M. Font & Ventura Verdú - 1993 - Studia Logica 52 (1):1 - 13.
    In our previous paper Algebraic Logic for Classical Conjunction and Disjunction we studied some relations between the fragmentL of classical logic having just conjunction and disjunction and the varietyD of distributive lattices, within the context of Algebraic Logic. The central tool in that study was a class of closure operators which we calleddistributive, and one of its main results was that for any algebraA of type (2,2) there is an isomorphism between the lattices of allD-congruences ofA and of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  39.  50
    Lattice logic as a fragment of (2-sorted) residuated modal logic.Chrysafis Hartonas - 2019 - Journal of Applied Non-Classical Logics 29 (2):152-170.
    ABSTRACTCorrespondence and Shalqvist theories for Modal Logics rely on the simple observation that a relational structure is at the same time the basis for a model of modal logic and for a model of first-order logic with a binary predicate for the accessibility relation. If the underlying set of the frame is split into two components,, and, then frames are at the same time the basis for models of non-distributive lattice logic and of two-sorted, residuated modal logic. This suggests (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  40.  30
    Nelson algebras, residuated lattices and rough sets: A survey.Jouni Järvinen, Sándor Radeleczki & Umberto Rivieccio - 2024 - Journal of Applied Non-Classical Logics 34 (2):368-428.
    Over the past 50 years, Nelson algebras have been extensively studied by distinguished scholars as the algebraic counterpart of Nelson's constructive logic with strong negation. Despite these studies, a comprehensive survey of the topic is currently lacking, and the theory of Nelson algebras remains largely unknown to most logicians. This paper aims to fill this gap by focussing on the essential developments in the field over the past two decades. Additionally, we explore generalisations of Nelson algebras, such as N4-lattices which (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  12
    Research on the Disease Intelligent Diagnosis Model Based on Linguistic Truth-Valued Concept Lattice.Li Yang, Yuhui Wang & Haixia Li - 2021 - Complexity 2021:1-11.
    Uncertainty natural language processing has always been a research focus in the artificial intelligence field. In this paper, we continue to study the linguistic truth-valued concept lattice and apply it to the disease intelligent diagnosis by building an intelligent model to directly handle natural language. The theoretical bases of this model are the classical concept lattice and the lattice implication algebra with natural language. The model includes the case library formed by patients, attributes matching, and the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  24
    Varieties of pseudocomplemented Kleene algebras.Diego Castaño, Valeria Castaño, José Patricio Díaz Varela & Marcela Muñoz Santis - 2021 - Mathematical Logic Quarterly 67 (1):88-104.
    In this paper we study the subdirectly irreducible algebras in the variety of pseudocomplemented De Morgan algebras by means of their De Morgan p‐spaces. We introduce the notion of the body of an algebra and determine when is subdirectly irreducible. As a consequence of this, in the case of pseudocomplemented Kleene algebras, two special subvarieties arise naturally, for which we give explicit identities that characterise them. We also introduce a subvariety of, namely the variety of bundle pseudocomplemented Kleene (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  18
    Tense Operators on Distributive Lattices with Implication.Gustavo Pelaitay & William Zuluaga - 2023 - Studia Logica 111 (4):687-708.
    Inspired by the definition of tense operators on distributive lattices presented by Chajda and Paseka in 2015, in this paper, we introduce and study the variety of tense distributive lattices with implication and we prove that these are categorically equivalent to a full subcategory of the category of tense centered Kleene algebras with implication. Moreover, we apply such an equivalence to describe the congruences of the algebras of each variety by means of tense 1-filters and tense centered deductive systems, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  44.  45
    Generalized rough sets (preclusivity fuzzy-intuitionistic (BZ) lattices).Gianpiero Cattaneo - 1997 - Studia Logica 58 (1):47-77.
    The standard Pawlak approach to rough set theory, as an approximation space consisting of a universe U and an equivalence (indiscernibility) relation R U x U, can be equivalently described by the induced preclusivity ("discernibility") relation U x U \ R, which is irreflexive and symmetric.We generalize the notion of approximation space as a pair consisting of a universe U and a discernibility or preclusivity (irreflexive and symmetric) relation, not necessarily induced from an equivalence relation. In this case the "elementary" (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  45.  61
    On ockham algebras: Congruence lattices and subdirectly irreducible algebras.P. Garcia & F. Esteva - 1995 - Studia Logica 55 (2):319 - 346.
    Distributive bounded lattices with a dual homomorphism as unary operation, called Ockham algebras, were firstly studied by Berman (1977). The varieties of Boolean algebras, De Morgan algebras, Kleene algebras and Stone algebras are some of the well known subvarieties of Ockham algebra. In this paper, new results about the congruence lattice of Ockham algebras are given. From these results and Urquhart's representation theorem for Ockham algebras a complete characterization of the subdirectly irreducible Ockham algebras is obtained. These results (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  46.  54
    Higher-level Inferences in the Strong-Kleene Setting: A Proof-theoretic Approach.Pablo Cobreros, Elio La Rosa & Luca Tranchini - 2021 - Journal of Philosophical Logic 51 (6):1417-1452.
    Building on early work by Girard ( 1987 ) and using closely related techniques from the proof theory of many-valued logics, we propose a sequent calculus capturing a hierarchy of notions of satisfaction based on the Strong Kleene matrices introduced by Barrio et al. (Journal of Philosophical Logic 49:93–120, 2020 ) and others. The calculus allows one to establish and generalize in a very natural manner several recent results, such as the coincidence of some of these notions with their (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  47.  29
    A Semi-lattice of Four-valued Literal-paraconsistent-paracomplete Logics.Natalya Tomova - 2021 - Bulletin of the Section of Logic 50 (1):35-53.
    In this paper, we consider the class of four-valued literal-paraconsistent-paracomplete logics constructed by combination of isomorphs of classical logic CPC. These logics form a 10-element upper semi-lattice with respect to the functional embeddinig one logic into another. The mechanism of variation of paraconsistency and paracompleteness properties in logics is demonstrated on the example of two four-element lattices included in the upper semi-lattice. Functional properties and sets of tautologies of corresponding literal-paraconsistent-paracomplete matrices are investigated. Among the considered matrices (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  47
    Belnap-Dunn semantics for natural implicative expansions of Kleene's strong three-valued matrix with two designated values.Gemma Robles & José M. Méndez - 2019 - Journal of Applied Non-Classical Logics 29 (1):37-63.
    ABSTRACTA conditional is natural if it fulfils the three following conditions. It coincides with the classical conditional when restricted to the classical values T and F; it satisfies the Modus Ponens; and it is assigned a designated value whenever the value assigned to its antecedent is less than or equal to the value assigned to its consequent. The aim of this paper is to provide a ‘bivalent’ Belnap-Dunn semantics for all natural implicative expansions of Kleene's strong 3-valued (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  49.  55
    On Some Categories of Involutive Centered Residuated Lattices.J. L. Castiglioni, M. Menni & M. Sagastume - 2008 - Studia Logica 90 (1):93-124.
    Motivated by an old construction due to J. Kalman that relates distributive lattices and centered Kleene algebras we define the functor K • relating integral residuated lattices with 0 with certain involutive residuated lattices. Our work is also based on the results obtained by Cignoli about an adjunction between Heyting and Nelson algebras, which is an enrichment of the basic adjunction between lattices and Kleene algebras. The lifting of the functor to the category of residuated lattices leads us (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  50.  12
    Choice-Free Dualities for Lattice Expansions: Application to Logics with a Negation Operator.Chrysafis Hartonas - forthcoming - Studia Logica:1-46.
    Constructive dualities have recently been proposed for some lattice-based algebras and a related project has been outlined by Holliday and Bezhanishvili, aiming at obtaining “choice-free spatial dualities for other classes of algebras [ $$\ldots $$ ], giving rise to choice-free completeness proofs for non-classical logics”. We present in this article a way to complete the Holliday–Bezhanishvili project (uniformly, for any normal lattice expansion). This is done by recasting in a choice-free manner recent relational representation and duality results (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 947