Selecting the Best Routing Traffic for Packets in LAN via Machine Learning to Achieve the Best Strategy

Complexity 2021:1-10 (2021)
  Copy   BIBTEX

Abstract

The application of machine learning touches all activities of human behavior such as computer network and routing packets in LAN. In the field of our research here, emphasis was placed on extracting weights that would affect the speed of the network's response and finding the best path, such as the number of nodes in the path and the congestion on each path, in addition to the cache used for each node. Therefore, the use of these elements in building the neural network is worthy, as is the exploitation of the feed forwarding and the backpropagation in the neural network in order to reach the best prediction for the best path. The goal of the proposed neural network is to minimize the network time delay within the optimization of the packet paths being addressed in this study. The shortest path is considered as the key issue in routing algorithm that can be carried out with real time of path computations. Exploiting the gaps in previous studies, which are represented in the lack of training of the system and the inaccurate prediction as a result of not taking into consideration the hidden layers' feedback, leads to great performance. This study aims to suggest an efficient algorithm that could help in selecting the shortest path to improve the existing methods using weights derived from packet ID and to change neural network iteration simultaneously. In this study, the design of the efficient neural network of appropriate output is discussed in detail including the principles of the network. The findings of the study revealed that exploiting the power of computational system to demonstrate computer simulation is really effective. It is also shown that the system achieved good results when training the neural network system to get 2.4% time delay with 5 nodes in local LAN. Besides, the results showed that the major features of the proposed model will be able to run in real time and are also adaptive to change with path topology.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,667

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2021-04-16

Downloads
26 (#859,286)

6 months
11 (#359,362)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Bo Zhang
Yale University

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references