Abstract
In their useful logic for a computer network Shramko and Wansing generalize initial values of Belnap’s 4-valued logic to the set 16 to be the power-set of Belnap’s 4. This generalization results in a very specific algebraic structure — the trilattice SIXTEEN3 with three orderings: information, truth and falsity. In this paper, a slightly different way of generalization is presented. As a base for further generalization a set 3 is chosen, where initial values are a — incoming data is asserted, d — incoming data is denied, and u — incoming data is neither asserted nor denied, that corresponds to the answer “don’t know”. In so doing, the power-set of 3, that is the set 8 is considered. It turns out that there are not three but four orderings naturally defined on the set 8 that form the tetralattice EIGHT4. Besides three ordering relations mentioned above it is an extra uncertainty ordering. Quite predictably, the logics generated by a–order and d–order coincide with first-degree entailment. Finally logic with two kinds of operations and consequence relation defined via a–ordering is considered. An adequate axiomatization for this logic is proposed.