Managing enzyme promiscuity in plant specialized metabolism: A lesson from flavonoid biosynthesis

Bioessays 43 (3):2000164 (2021)
  Copy   BIBTEX

Abstract

Specificities of enzymes involved in plant specialized metabolism, including flavonoid biosynthesis, are generally promiscuous. This enzyme promiscuity has served as an evolutionary basis for new enzyme functions and metabolic pathways in land plants adapting to environmental challenges. This phenomenon may lead, however, to inefficiency in specialized metabolism and adversely affect metabolite‐mediated plant survival. How plants manage enzyme promiscuity for efficient specialized metabolism is, thus, an open question. Recent studies of flavonoid biosynthesis addressing this issue have revealed a conserved strategy, namely, a homolog of chalcone isomerase with no catalytic activity binds to chalcone synthase, a key flavonoid pathway enzyme, to narrow (or rectify) the enzyme's highly promiscuous product specificity. Reducing promiscuity via specific protein–protein interactions among metabolic enzymes and proteins may be a solution adopted by land plants to achieve efficient operation of specialized metabolism, while the intrinsic promiscuity of enzymes has likely been retained incidentally.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,247

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2020-12-22

Downloads
18 (#1,111,327)

6 months
6 (#856,140)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references