A mathematical model of uterine dynamics and its application to human parturition

Acta Biotheoretica 48 (2):95-105 (2000)
  Copy   BIBTEX

Abstract

We have developed a simple mathematical model with three physiologically significant states to describe the changes in intrauterine pressure associated with a contraction during human parturition. The myometrium is modelled as a set of smooth muscle cells, each of which is in one of three states (quiescent, contracted, refractory) at a given time. These states are occupied according to a cycle governed by three temporal parameters. The solutions of the equations describing the model show an oscillatory behavior for particular values of these parameters, which is very similar to the time dependant development of intrauterine pressure during labor. Due to its non-linear terms, our model could lead to chaotic oscillations (in the mathematical sense), whose clinical counterpart may occur in cases of dystocia. Despite its simplicity, this model appears to be a useful guide to further investigations of the oscillatory behavior of the myometrium, or other smooth muscles, in normal and pathological situations.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 103,449

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2009-01-28

Downloads
30 (#787,710)

6 months
2 (#1,294,541)

Historical graph of downloads
How can I increase my downloads?