Abstract
In order to make scientific results relevant to practical decision making, it is often necessary to transfer a result obtained in one set of circumstances—an animal model, a computer simulation, an economic experiment—to another that may differ in relevant respects—for example, to humans, the global climate, or an auction. Such inferences, which we can call extrapolations, are a type of argument by analogy. This essay sketches a new approach to analogical inference that utilizes chain graphs, which resemble directed acyclic graphs (DAGs) except in allowing that nodes may be connected by lines as well as arrows. This chain graph approach generalizes the account of extrapolation I provided in my (2008) book and leads to new insights that integrate the contributions of the other participants of this symposium. More specifically, this approach explicates the role of “fingerprints,” or distinctive markers, as a strategy for avoiding an underdetermination problem having to do with spurious analogies. Moreover, it shows how the extrapolator’s circle, one of the central challenges for extrapolation highlighted in my book, is closely tied to distinctive markers and the Markov condition as it applies to chain graphs. Finally, the approach suggests additional ways in which investigations of a model can provide information about a target that are illustrated by examples concerning nanomaterials in sunscreens and Wendy Parker’s discussion of fingerprints in climate science.