Abstract
A new theory of spacetime is proposed in which translations are considered as a part of the de Sitter gauge group. The theory is built along the general principles of classical gauge field theories, which are outlined. Applications of gauge principles to linear and affine connections are also given in order to make the presentation self-sufficient. A de Sitter invariant Lagrangian is constructed, which yields approximately Einstein's vacuum equations when it is subjected to variation with respect to gauge potentials and the result expressed in a specific gauge class. As a difference from the usual use of de Sitter groups, the radius of its translations must be small in the present approach, which probably has the meaning of an elementary subatomic length. The solution of the equations describing flat spacetime is not the trivial zero-curvature connection of the conventional approach