Quantum relativistic action at a distance

Foundations of Physics 19 (12):1441-1477 (1989)
  Copy   BIBTEX

Abstract

A well-known relativistic action at a distance interaction of two unequal masses is altered so as to yield purely Newtonian radial forces with fixed particle rest masses in the system center-of-momentum inertial frame. Although particle masses experience no kinematic mass increase in this frame, speeds are naturally restricted to less than the speed of light. We derive a relation between the center-of-momentum frame total Newtonian energy and the composite rest mass. In a new proper time quantum formalism, we obtain an L2(R4 ⊗ R4, C) Hilbert space by varying individual particle rest masses. We propose the use of density operators, recognizing that the auxiliary proper time parameter is not an observable. The quantum formalism is applied to our altered version of the relativistic harmonic oscillator. Our generalized coherent states yield four-dimensional wave packets which follow the correct classical world lines. Appendices contain reviews of classical Hamiltonian reparametrization (incorporating our notion of manifest covariance), and a comparison of this work with the literature

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 105,326

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-11-22

Downloads
103 (#218,463)

6 months
4 (#1,008,875)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Donald Salisbury
Austin College