Abstract
Deflationists argue that ‘true’ is merely a logico-linguistic device for expressing blind ascriptions and infinite generalisations. For this reason, some authors have argued that deflationary truth must be conservative, i.e. that a deflationary theory of truth for a theory S must not entail sentences in S’s language that are not already entailed by S. However, it has been forcefully argued that any adequate theory of truth for S must be non-conservative and that, for this reason, truth cannot be deflationary :493–521, 1998; Ketland in Mind 108:69–94, 1999). We consider two defences of conservative deflationism, respectively proposed by Waxman :429–463, 2017) and Tennant :551–582, 2002), and argue that they are both unsuccessful. In Waxman’s hands, deflationists are committed either to a non-purely expressive notion of truth, or to a conception of mathematics that does not allow them to justifiably exclude non-conservative theories of truth. Tennant’s conservative deflationism fares no better: if deflationist truth must be conservative over arithmetic, it can be shown to collapse into a non-conservative variety of deflationism.