Results for 'Arithmetic '

961 found
Order:
  1.  27
    Huw price.Is Arithmetic Consistent & Graham Priest - 1994 - Mind 103 (411).
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  2. Special Issue: Methods for Investigating Self-Referential Truth edited by Volker Halbach Volker Halbach/Editorial Introduction 3.Petr Hájek, Arithmetical Hierarchy Iii, Gerard Allwein & Wendy MacCaull - 2001 - Studia Logica 68:421-422.
  3. It Adds Up After All: Kant’s Philosophy of Arithmetic in Light of the Traditional Logic.R. Lanier Anderson - 2004 - Philosophy and Phenomenological Research 69 (3):501–540.
    Officially, for Kant, judgments are analytic iff the predicate is "contained in" the subject. I defend the containment definition against the common charge of obscurity, and argue that arithmetic cannot be analytic, in the resulting sense. My account deploys two traditional logical notions: logical division and concept hierarchies. Division separates a genus concept into exclusive, exhaustive species. Repeated divisions generate a hierarchy, in which lower species are derived from their genus, by adding differentia(e). Hierarchies afford a straightforward sense of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  4. Self-reference and the languages of arithmetic.Richard Heck - 2007 - Philosophia Mathematica 15 (1):1-29.
    I here investigate the sense in which diagonalization allows one to construct sentences that are self-referential. Truly self-referential sentences cannot be constructed in the standard language of arithmetic: There is a simple theory of truth that is intuitively inconsistent but is consistent with Peano arithmetic, as standardly formulated. True self-reference is possible only if we expand the language to include function-symbols for all primitive recursive functions. This language is therefore the natural setting for investigations of self-reference.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  5.  50
    The Rise of Chance in Evolutionary Theory: A Pompous Parade of Arithmetic.Charles H. Pence - 2021 - London: Academic Press.
    The Rise of Chance in Evolutionary Theory: A Pompous Parade of Arithmetic explores a pivotal conceptual moment in the history of evolutionary theory: the development of its extensive reliance on a wide array of concepts of chance. It tells the history of a methodological and conceptual development that reshaped our approach to natural selection over a century, ranging from Darwin’s earliest notebooks in the 1830s to the early years of the Modern Synthesis in the 1930s. Far from being a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  6.  39
    Prenex normal form theorems in semi-classical arithmetic.Makoto Fujiwara & Taishi Kurahashi - 2021 - Journal of Symbolic Logic 86 (3):1124-1153.
    Akama et al. [1] systematically studied an arithmetical hierarchy of the law of excluded middle and related principles in the context of first-order arithmetic. In that paper, they first provide a prenex normal form theorem as a justification of their semi-classical principles restricted to prenex formulas. However, there are some errors in their proof. In this paper, we provide a simple counterexample of their prenex normal form theorem [1, Theorem 2.7], then modify it in an appropriate way which still (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  7.  46
    Frege, Dedekind, and Peano on the Foundations of Arithmetic (Routledge Revivals).J. P. Mayberry - 2013 - Assen, Netherlands: Routledge.
    First published in 1982, this reissue contains a critical exposition of the views of Frege, Dedekind and Peano on the foundations of arithmetic. The last quarter of the 19th century witnessed a remarkable growth of interest in the foundations of arithmetic. This work analyses both the reasons for this growth of interest within both mathematics and philosophy and the ways in which this study of the foundations of arithmetic led to new insights in philosophy and striking advances (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  8.  54
    The unfolding of non-finitist arithmetic.Solomon Feferman & Thomas Strahm - 2000 - Annals of Pure and Applied Logic 104 (1-3):75-96.
    The unfolding of schematic formal systems is a novel concept which was initiated in Feferman , Gödel ’96, Lecture Notes in Logic, Springer, Berlin, 1996, pp. 3–22). This paper is mainly concerned with the proof-theoretic analysis of various unfolding systems for non-finitist arithmetic . In particular, we examine two restricted unfoldings and , as well as a full unfolding, . The principal results then state: is equivalent to ; is equivalent to ; is equivalent to . Thus is proof-theoretically (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  9.  20
    A standard model of Peano Arithmetic with no conservative elementary extension.Ali Enayat - 2008 - Annals of Pure and Applied Logic 156 (2):308-318.
    The principal result of this paper answers a long-standing question in the model theory of arithmetic [R. Kossak, J. Schmerl, The Structure of Models of Peano Arithmetic, Oxford University Press, 2006, Question 7] by showing that there exists an uncountable arithmetically closed family of subsets of the set ω of natural numbers such that the expansion of the standard model of Peano arithmetic has no conservative elementary extension, i.e., for any elementary extension of , there is a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  10.  54
    A model of second-order arithmetic satisfying AC but not DC.Sy-David Friedman, Victoria Gitman & Vladimir Kanovei - 2019 - Journal of Mathematical Logic 19 (1):1850013.
    We show that there is a [Formula: see text]-model of second-order arithmetic in which the choice scheme holds, but the dependent choice scheme fails for a [Formula: see text]-assertion, confirming a conjecture of Stephen Simpson. We obtain as a corollary that the Reflection Principle, stating that every formula reflects to a transitive set, can fail in models of [Formula: see text]. This work is a rediscovery by the first two authors of a result obtained by the third author in (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  11.  33
    The FAN principle and weak König's lemma in herbrandized second-order arithmetic.Fernando Ferreira - 2020 - Annals of Pure and Applied Logic 171 (9):102843.
    We introduce a herbrandized functional interpretation of a first-order semi-intuitionistic extension of Heyting Arithmetic and study its main properties. We then extend the interpretation to a certain system of second-order arithmetic which includes a (classically false) formulation of the FAN principle and weak König's lemma. It is shown that any first-order formula provable in this system is classically true. It is perhaps worthy of note that, in our interpretation, second-order variables are interpreted by finite sets of natural numbers.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  12.  58
    A modal sequent calculus for a fragment of arithmetic.G. Sambin & S. Valentini - 1980 - Studia Logica 39 (2-3):245-256.
    Global properties of canonical derivability predicates in Peano Arithmetic) are studied here by means of a suitable propositional modal logic GL. A whole book [1] has appeared on GL and we refer to it for more information and a bibliography on GL. Here we propose a sequent calculus for GL and, by exhibiting a good proof procedure, prove that such calculus admits the elimination of cuts. Most of standard results on GL are then easy consequences: completeness, decidability, finite model (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  13.  90
    Fundamental notions of analysis in subsystems of second-order arithmetic.Jeremy Avigad - 2006 - Annals of Pure and Applied Logic 139 (1):138-184.
    We develop fundamental aspects of the theory of metric, Hilbert, and Banach spaces in the context of subsystems of second-order arithmetic. In particular, we explore issues having to do with distances, closed subsets and subspaces, closures, bases, norms, and projections. We pay close attention to variations that arise when formalizing definitions and theorems, and study the relationships between them.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  14. Interpolation theorems, lower Bounds for proof systems, and independence results for bounded arithmetic.Jan Krajíček - 1997 - Journal of Symbolic Logic 62 (2):457-486.
    A proof of the (propositional) Craig interpolation theorem for cut-free sequent calculus yields that a sequent with a cut-free proof (or with a proof with cut-formulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuit-size is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: (1) Feasible (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  15.  35
    End extensions of models of linearly bounded arithmetic.Domenico Zambella - 1997 - Annals of Pure and Applied Logic 88 (2-3):263-277.
    We show that every model of IΔ0 has an end extension to a model of a theory where log-space computable function are formalizable. We also show the existence of an isomorphism between models of IΔ0 and models of linear arithmetic LA.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  16.  39
    Formalizing non-standard arguments in second-order arithmetic.Keita Yokoyama - 2010 - Journal of Symbolic Logic 75 (4):1199-1210.
    In this paper, we introduce the systems ns-ACA₀ and ns-WKL₀ of non-standard second-order arithmetic in which we can formalize non-standard arguments in ACA₀ and WKL₀, respectively. Then, we give direct transformations from non-standard proofs in ns-ACA₀ or ns-WKL₀ into proofs in ACA₀ or WKL₀.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  17. (1 other version)A variant to Hilbert's theory of the foundations of arithmetic.G. Kreisel - 1953 - British Journal for the Philosophy of Science 4 (14):107-129.
    IN Hilbert's theory of the foundations of any given branch of mathematics the main problem is to establish the consistency (of a suitable formalisation) of this branch. Since the (intuitionist) criticisms of classical logic, which Hilbert's theory was intended to meet, never even alluded to inconsistencies (in classical arithmetic), and since the investigations of Hilbert's school have always established much more than mere consistency, it is natural to formulate another general problem in the foundations of mathematics: to translate statements (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  18.  74
    Challenges to predicative foundations of arithmetic.Solomon Feferman - manuscript
    This is a sequel to our article “Predicative foundations of arithmetic” (1995), referred to in the following as [PFA]; here we review and clarify what was accomplished in [PFA], present some improvements and extensions, and respond to several challenges. The classic challenge to a program of the sort exemplified by [PFA] was issued by Charles Parsons in a 1983 paper, subsequently revised and expanded as Parsons (1992). Another critique is due to Daniel Isaacson (1987). Most recently, Alexander George and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  19.  21
    There Are No Intermediate Structures Between the Group of Integers and Presburger Arithmetic.Gabriel Conant - 2018 - Journal of Symbolic Logic 83 (1):187-207.
    We show that if a first-order structure${\cal M}$, with universe ℤ, is an expansion of (ℤ,+,0) and a reduct of (ℤ,+,<,0), then${\cal M}$must be interdefinable with (ℤ,+,0) or (ℤ,+,<,0).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  20.  37
    The Nature and Origin of Rational Errors in Arithmetic Thinking: Induction from Examples and Prior Knowledge.Talia Ben-Zeev - 1995 - Cognitive Science 19 (3):341-376.
    Students systematically and deliberately apply rule‐based but erroneous algorithms to solving unfamiliar arithmetic problems. These algorithms result in erroneous solutions termed rational errors. Computationally, students' erroneous algorithms can be represented by perturbations or bugs in otherwise correct arithmetic algorithms (Brown & VanLehn, 1980; Langley & Ohilson, 1984; VanLehn, 1983, 1986, 1990; Young S O'Sheo, 1981). Bugs are useful for describing how rational errors occur but bugs are not sufficient for explaining their origin. A possible explanation for this is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  21.  49
    Essays on Frege's Basic Laws of Arithmetic.Philip A. Ebert & Marcus Rossberg (eds.) - 2019 - Oxford: Oxford University Press.
    The volume is the first collection of essays that focuses on Gottlob Frege's Basic Laws of Arithmetic (1893/1903), highlighting both the technical and the philosophical richness of Frege's magnum opus. It brings together twenty-two renowned Frege scholars whose contributions discuss a wide range of topics arising from both volumes of Basic Laws of Arithmetic. The original chapters in this volume make vivid the importance and originality of Frege's masterpiece, not just for Frege scholars but for the study of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22.  28
    Indiscernibles and satisfaction classes in arithmetic.Ali Enayat - 2024 - Archive for Mathematical Logic 63 (5):655-677.
    We investigate the theory Peano Arithmetic with Indiscernibles ( \(\textrm{PAI}\) ). Models of \(\textrm{PAI}\) are of the form \(({\mathcal {M}},I)\), where \({\mathcal {M}}\) is a model of \(\textrm{PA}\), _I_ is an unbounded set of order indiscernibles over \({\mathcal {M}}\), and \(({\mathcal {M}},I)\) satisfies the extended induction scheme for formulae mentioning _I_. Our main results are Theorems A and B following. _Theorem A._ _Let_ \({\mathcal {M}}\) _be a nonstandard model of_ \(\textrm{PA}\) _ of any cardinality_. \(\mathcal {M }\) _has an (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  23.  42
    Riesz representation theorem, Borel measures and subsystems of second-order arithmetic.Xiaokang Yu - 1993 - Annals of Pure and Applied Logic 59 (1):65-78.
    Yu, X., Riesz representation theorem, Borel measures and subsystems of second-order arithmetic, Annals of Pure and Applied Logic 59 65-78. Formalized concept of finite Borel measures is developed in the language of second-order arithmetic. Formalization of the Riesz representation theorem is proved to be equivalent to arithmetical comprehension. Codes of Borel sets of complete separable metric spaces are defined and proved to be meaningful in the subsystem ATR0. Arithmetical transfinite recursion is enough to prove the measurability of Borel (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  24.  53
    A marriage of Brouwer’s intuitionism and Hilbert’s finitism I: Arithmetic.Takako Nemoto & Sato Kentaro - 2022 - Journal of Symbolic Logic 87 (2):437-497.
    We investigate which part of Brouwer’s Intuitionistic Mathematics is finitistically justifiable or guaranteed in Hilbert’s Finitism, in the same way as similar investigations on Classical Mathematics (i.e., which part is equiconsistent with$\textbf {PRA}$or consistent provably in$\textbf {PRA}$) already done quite extensively in proof theory and reverse mathematics. While we already knew a contrast from the classical situation concerning the continuity principle, more contrasts turn out: we show that several principles are finitistically justifiable or guaranteed which are classically not. Among them (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  25. Could experience disconfirm the propositions of arithmetic?Jessica M. Wilson - 2000 - Canadian Journal of Philosophy 30 (1):55--84.
    Alberto Casullo ("Necessity, Certainty, and the A Priori", Canadian Journal of Philosophy 18, 1988) argues that arithmetical propositions could be disconfirmed by appeal to an invented scenario, wherein our standard counting procedures indicate that 2 + 2 != 4. Our best response to such a scenario would be, Casullo suggests, to accept the results of the counting procedures, and give up standard arithmetic. While Casullo's scenario avoids arguments against previous "disconfirming" scenarios, it founders on the assumption, common to scenario (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  26.  67
    On the scheme of induction for bounded arithmetic formulas.A. J. Wilkie & J. B. Paris - 1987 - Annals of Pure and Applied Logic 35 (C):261-302.
  27.  50
    Periodic points and subsystems of second-order arithmetic.Harvey Friedman, Stephen G. Simpson & Xiaokang Yu - 1993 - Annals of Pure and Applied Logic 62 (1):51-64.
    We study the formalization within sybsystems of second-order arithmetic of theorems concerning periodic points in dynamical systems on the real line. We show that Sharkovsky's theorem is provable in WKL0. We show that, with an additional assumption, Sharkovsky's theorem is provable in RCA0. We show that the existence for all n of n-fold iterates of continuous mappings of the closed unit interval into itself is equivalent to the disjunction of Σ02 induction and weak König's lemma.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  28.  38
    The Jordan curve theorem and the Schönflies theorem in weak second-order arithmetic.Nobuyuki Sakamoto & Keita Yokoyama - 2007 - Archive for Mathematical Logic 46 (5-6):465-480.
    In this paper, we show within ${\mathsf{RCA}_0}$ that both the Jordan curve theorem and the Schönflies theorem are equivalent to weak König’s lemma. Within ${\mathsf {WKL}_0}$ , we prove the Jordan curve theorem using an argument of non-standard analysis based on the fact that every countable non-standard model of ${\mathsf {WKL}_0}$ has a proper initial part that is isomorphic to itself (Tanaka in Math Logic Q 43:396–400, 1997).
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  29.  39
    Minimal elementary extensions of models of set theory and arithmetic.Ali Enayat - 1990 - Archive for Mathematical Logic 30 (3):181-192.
    TheoremEvery model of ZFChas a conservative elementary extension which possesses a cofinal minimal elementary extension.An application of Boolean ultrapowers to models of full arithmetic is also presented.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  30.  26
    The provably total NP search problems of weak second order bounded arithmetic.Leszek Aleksander Kołodziejczyk, Phuong Nguyen & Neil Thapen - 2011 - Annals of Pure and Applied Logic 162 (6):419-446.
    We define a new NP search problem, the “local improvement” principle, about labellings of an acyclic, bounded-degree graph. We show that, provably in , it characterizes the consequences of and that natural restrictions of it characterize the consequences of and of the bounded arithmetic hierarchy. We also show that over V0 it characterizes the consequences of V1 and hence that, in some sense, a miniaturized version of the principle gives a new characterization of the consequences of . Throughout our (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  31.  25
    Infinite substructure lattices of models of Peano Arithmetic.James H. Schmerl - 2010 - Journal of Symbolic Logic 75 (4):1366-1382.
    Bounded lattices (that is lattices that are both lower bounded and upper bounded) form a large class of lattices that include all distributive lattices, many nondistributive finite lattices such as the pentagon lattice N₅, and all lattices in any variety generated by a finite bounded lattice. Extending a theorem of Paris for distributive lattices, we prove that if L is an ℵ₀-algebraic bounded lattice, then every countable nonstandard model ������ of Peano Arithmetic has a cofinal elementary extension ������ such (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  32.  56
    On the available partial respects in which an axiomatization for real valued arithmetic can recognize its consistency.Dan E. Willard - 2006 - Journal of Symbolic Logic 71 (4):1189-1199.
    Gödel’s Second Incompleteness Theorem states axiom systems of sufficient strength are unable to verify their own consistency. We will show that axiomatizations for a computer’s floating point arithmetic can recognize their cut-free consistency in a stronger respect than is feasible under integer arithmetics. This paper will include both new generalizations of the Second Incompleteness Theorem and techniques for evading it.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  33. Three Kantian Strands in Frege’s View of Arithmetic.Gilead Bar-Elli - 2014 - Journal for the History of Analytical Philosophy 2 (7).
    On the background of explaining their different notions of analyticity, their different views on definitions, and some aspects of Frege’s notion of sense, three important Kantian strands that interweave into Frege’s view are exposed. First, Frege’s remarkable view that arithmetic, though analytic, contains truths that “extend our knowledge”, and by Kant’s use of the term, should be regarded synthetic. Secondly, that our arithmetical (and logical) knowledge depends on a sort of a capacity to recognize and identify objects, which are (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Possible m-diagrams of models of arithmetic.Andrew Arana - 2005 - In Stephen Simpson (ed.), Reverse Mathematics 2001. Association for Symbolic Logic.
    In this paper I begin by extending two results of Solovay; the first characterizes the possible Turing degrees of models of True Arithmetic (TA), the complete first-order theory of the standard model of PA, while the second characterizes the possible Turing degrees of arbitrary completions of P. I extend these two results to characterize the possible Turing degrees of m-diagrams of models of TA and of arbitrary complete extensions of PA. I next give a construction showing that the conditions (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  35.  33
    Subrecursive degrees and fragments of Peano Arithmetic.Lars Kristiansen - 2001 - Archive for Mathematical Logic 40 (5):365-397.
    Let T 0?T 1 denote that each computable function, which is provable total in the first order theory T 0, is also provable total in the first order theory T 1. Te relation ? induces a degree structure on the sound finite Π2 extensions of EA (Elementary Arithmetic). This paper is devoted to the study of this structure. However we do not study the structure directly. Rather we define an isomorphic subrecursive degree structure <≤,?>, and then we study <≤,?> (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  36.  38
    Why The Axioms and Theorems of Arithmetic are not Legal Norms.Matthew H. Kramer - 2007 - Oxford Journal of Legal Studies 27 (3):555-562.
    Ronald Dworkin has long criticized legal positivists for their efforts to distinguish between legal and non-legal standards of conduct that are incumbent on people. Recently, Dworkin has broached this criticism in his hostile account of the debates between Incorporationist Legal Positivists and Exclusive Legal Positivists. Specifically, he has maintained that Incorporationists cannot avoid the unpalatable conclusion that the axioms and theorems of arithmetic are legal norms. This article shows why such a conclusion is indeed avoidable and why Dworkin's criticism (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  37.  29
    Preservation theorems and restricted consistency statements in bounded arithmetic.Arnold Beckmann - 2004 - Annals of Pure and Applied Logic 126 (1-3):255-280.
    We define and study a new restricted consistency notion RCon ∗ for bounded arithmetic theories T 2 j . It is the strongest ∀ Π 1 b -statement over S 2 1 provable in T 2 j , similar to Con in Krajíček and Pudlák, 29) or RCon in Krajı́ček and Takeuti 107). The advantage of our notion over the others is that RCon ∗ can directly be used to construct models of T 2 j . We apply this (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  39
    A nonasymptotic lower time bound for a strictly bounded second-order arithmetic.Anatoly P. Beltiukov - 2006 - Annals of Pure and Applied Logic 141 (3):320-324.
    We obtain a nonasymptotic lower time bound for deciding sentences of bounded second-order arithmetic with respect to a form of the random access machine with stored programs. More precisely, let P be an arbitrary program for the model under consideration which recognized true formulas with a given range of parameters. Let p be the length of P and let N be an arbitrary natural number. We show how to construct a formula G with one free variable with length not (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  39.  16
    Robert Meyer's Publications on Relevant Arithmetic.Thomas Macaulay Ferguson & Graham Priest - 2021 - Australasian Journal of Logic 18 (5):146-149.
    This is a bibliography of R.K. Meyer's published articles on relevant arithmetic.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40. The consistency of Frege's foundations of arithmetic.George Boolos - 1987 - In Judith Jarvis Thomson (ed.), On Being and Saying: Essays for Richard Cartwright. MIT Press. pp. 3--20.
     
    Export citation  
     
    Bookmark   96 citations  
  41.  47
    The equivalence of the disjunction and existence properties for modal arithmetic.Harvey Friedman & Michael Sheard - 1989 - Journal of Symbolic Logic 54 (4):1456-1459.
    In a modal system of arithmetic, a theory S has the modal disjunction property if whenever $S \vdash \square\varphi \vee \square\psi$ , either $S \vdash \square\varphi$ or $S \vdash \square\psi. S$ has the modal numerical existence property if whenever $S \vdash \exists x\square\varphi(x)$ , there is some natural number n such that $S \vdash \square\varphi(\mathbf{n})$ . Under certain broadly applicable assumptions, these two properties are equivalent.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42. Model-theoretic properties characterizing Peano arithmetic.Richard Kaye - 1991 - Journal of Symbolic Logic 56 (3):949-963.
    Let= {0,1, +,·,<} be the usual first-order language of arithmetic. We show that Peano arithmetic is the least first-order-theory containingIΔ0+ exp such that every complete extensionTof it has a countable modelKsatisfying(i)Khas no proper elementary substructures, and(ii) wheneverL≻Kis a countable elementary extension there isandsuch that.Other model-theoretic conditions similar to (i) and (ii) are also discussed and shown to characterize Peano arithmetic.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Empiricism, Probability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Journal of Applied Logic 12 (3):319–348.
    The topic of this paper is our knowledge of the natural numbers, and in particular, our knowledge of the basic axioms for the natural numbers, namely the Peano axioms. The thesis defended in this paper is that knowledge of these axioms may be gained by recourse to judgements of probability. While considerations of probability have come to the forefront in recent epistemology, it seems safe to say that the thesis defended here is heterodox from the vantage point of traditional philosophy (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  88
    A note on finiteness in the predicative foundations of arithmetic.Fernando Ferreira - 1999 - Journal of Philosophical Logic 28 (2):165-174.
    Recently, Feferman and Hellman (and Aczel) showed how to establish the existence and categoricity of a natural number system by predicative means given the primitive notion of a finite set of individuals and given also a suitable pairing function operating on individuals. This short paper shows that this existence and categoricity result does not rely (even indirectly) on finite-set induction, thereby sustaining Feferman and Hellman's point in favor of the view that natural number induction can be derived from a very (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  45. Some remarks on initial segments in models of peano arithmetic.Henryk Kotlarski - 1984 - Journal of Symbolic Logic 49 (3):955-960.
    If $M \models PA (= Peano Arithmetic)$ , we set $A^M = \{N \subset_e M: N \models PA\}$ and study this family.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  46. A mathematical incompleteness in Peano arithmetic.Jeff Paris & Leo Harrington - 1977 - In Jon Barwise (ed.), Handbook of mathematical logic. New York: North-Holland. pp. 90--1133.
     
    Export citation  
     
    Bookmark   63 citations  
  47.  38
    On cofinal extensions of models of arithmetic.Henryk Kotlarski - 1983 - Journal of Symbolic Logic 48 (2):253-262.
    We study cofinal extensions of models of arithmetic, in particular we show that some properties near to expandability are preserved under cofinal extensions.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  48. Review: Potter, Reason's Nearest Kin: Philosophies of Arithmetic from Kant to Carnap.John MacFarlane - 2001 - Journal of the History of Philosophy 39 (3):454-456.
    In lieu of an abstract, here is a brief excerpt of the content:Journal of the History of Philosophy 39.3 (2001) 454-456 [Access article in PDF] Michael Potter. Reason's Nearest Kin: Philosophies of Arithmetic from Kant to Carnap.New York: Oxford University Press, 2000. Pp. x + 305. Cloth, $45.00. This book tells the story of a remarkable series of answers to two related questions:(1) How can arithmetic be necessary and knowable a priori? [End Page 454](2) What accounts for the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  33
    RETRACTED ARTICLE: There are Infinitely Many Mersenne Prime Numbers. Applications of Rasiowa–Sikorski Lemma in Arithmetic (II).Janusz Czelakowski - 2023 - Studia Logica 111 (2):359-359.
    The paper is concerned with the old conjecture that there are infinitely many Mersenne primes. It is shown in the work that this conjecture is true in the standard model of arithmetic. The proof refers to the general approach to first–order logic based on Rasiowa-Sikorski Lemma and the derived notion of a Rasiowa–Sikorski set. This approach was developed in the papers [ 2 – 4 ]. This work is a companion piece to [ 4 ].
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  50. Internal and external consistency of arithmetic.Yvon Gauthier - 2001 - Logica Trianguli 5:19-41.
    What Gödel referred to as “outer” consistency is contrasted with the “inner” consistency of arithmetic from a constructivist point of view. In the settheoretic setting of Peano arithmetic, the diagonal procedure leads out of the realm of natural numbers. It is shown that Hilbert’s programme of arithmetization points rather to an “internalisation” of consistency. The programme was continued by Herbrand, Gödel and Tarski. Tarski’s method of quantifier elimination and Gödel’s Dialectica interpretation are part and parcel of Hilbert’s finitist (...)
     
    Export citation  
     
    Bookmark  
1 — 50 / 961