Hybrid Partial Type Theory

Journal of Symbolic Logic:1-43 (forthcoming)
  Copy   BIBTEX

Abstract

In this article we define a logical system called Hybrid Partial Type Theory ( $\mathcal {HPTT}$ ). The system is obtained by combining William Farmer’s partial type theory with a strong form of hybrid logic. William Farmer’s system is a version of Church’s theory of types which allows terms to be non-denoting; hybrid logic is a version of modal logic in which it is possible to name worlds and evaluate expressions with respect to particular worlds. We motivate this combination of ideas in the introduction, and devote the rest of the article to defining, axiomatising, and proving a completeness result for $\mathcal {HPTT}$.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,247

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2023-09-18

Downloads
24 (#909,478)

6 months
9 (#485,111)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

María Manzano
Universidad de Salamanca
Patrick Blackburn
Roskilde University

Citations of this work

Add more citations

References found in this work

A formulation of the simple theory of types.Alonzo Church - 1940 - Journal of Symbolic Logic 5 (2):56-68.
Completeness in the theory of types.Leon Henkin - 1950 - Journal of Symbolic Logic 15 (2):81-91.
Completeness in Hybrid Type Theory.Carlos Areces, Patrick Blackburn, Antonia Huertas & María Manzano - 2014 - Journal of Philosophical Logic 43 (2-3):209-238.

View all 9 references / Add more references