Construction d'un groupe dans les structures C-minimales

Journal of Symbolic Logic 73 (3):957-968 (2008)
  Copy   BIBTEX

Abstract

We will study some aspects of the local structure of models of certain C-minimal theories. We will prove (theorem 19) that, in a sufficiently saturated C-minimal structure in which the algebraic closure has the exchange property and which is locally modular, we can construct an infinite type-definable group around any non trivial point (a term to be defined later). On va étudier ici certains aspects de la structure locale des modèles de certaines théories C-minimales. On va prouver (théorème 19) que, dans une structure C-minimale suffisamment saturée, localement modulaire et dans laquelle la clôture algébrique permet de définir une notion de dimension, on peut construire un groupe type-définissable infini autour de tout point non trivial (terme à définir par la suite)

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 105,810

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2010-09-12

Downloads
85 (#264,648)

6 months
5 (#854,518)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

A new strongly minimal set.Ehud Hrushovski - 1993 - Annals of Pure and Applied Logic 62 (2):147-166.
On variants of o-minimality.Dugald Macpherson & Charles Steinhorn - 1996 - Annals of Pure and Applied Logic 79 (2):165-209.
Cell decompositions of C-minimal structures.Deirdre Haskell & Dugald Macpherson - 1994 - Annals of Pure and Applied Logic 66 (2):113-162.

Add more references