Abstract
In an ω1-saturated nonstandard universe a cut is an initial segment of the hyperintegers which is closed under addition. Keisler and Leth in [KL] introduced, for each given cut U, a corresponding U-topology on the hyperintegers by letting O be U-open if for any x ∈ O there is a y greater than all the elements in U such that the interval $\lbrack x - y, x + y\rbrack \subseteq O$ . Let U be a cut in a hyperfinite time line H, which is a hyperfinite initial segment of the hyperintegers. The U-monad topology of H is the quotient topology of the U-topological space H modulo U. In this paper we answer a question of Keisler and Leth about the U-monad topologies by showing that when H is κ-saturated and has cardinality κ, (1) if the coinitiality of U1 is uncountable, then the U1-monad topology and the U2-monad topology are homeomorphic iff both U1 and U2 have the same coinitiality; and (2) H can produce exactly three different U-monad topologies (up to homeomorphism) for those U's with countable coinitiality. As a corollary H can produce exactly four different U-monad topologies if the cardinality of H is ω1