Abstract
For countable structures U and B, let $\mathfrak{U}\overset{\alpha}{\rightarrow}\mathfrak{B}$ abbreviate the statement that every Σ0 α (Lω1,ω) sentence true in U also holds in B. One can define a back and forth game between the structures U and B that determines whether $\mathfrak{U}\overset{\alpha}{\rightarrow}\mathfrak{B}$ . We verify that if θ is an Lω,ω sentence that is not equivalent to any Lω,ω Σ0 n sentence, then there are countably infinite models U and B such that $\mathfrak{U} \vDash \theta, \mathfrak{B} \vDash \neg \theta$ , and $\mathfrak{U}\overset{n}{\rightarrow}\mathfrak{B}$ . For countable languages L there is a natural way to view L structures with universe ω as a topological space, XL. Let [U] = {B ∈ XL∣B ≅ U} denote the isomorphism class of U. Let U and B be countably infinite nonisomorphic L structures, and let $C \subseteq \omega^\omega$ be any Π0 α subset. Our main result states that if $\mathfrak{U}\overset{\alpha}{\rightarrow}\mathfrak{B}$ , then there is a continuous function f: ωω → XL with the property that $x \in C \Rightarrow f(x) \in \lbrack\mathfrak{U}\rbrack$ and $x \notin C \Rightarrow f(x) \in \lbrack\mathfrak{B}\rbrack$ . In fact, for α ≤ 3, the continuous function f can be defined from the $\overset{\alpha}{\rightarrow}$ relation